AI Article Synopsis

  • Plastics are long-chain hydrocarbon compounds derived from nonrenewable petroleum, which have become crucial in daily life due to their lightweight, cost-effective, and versatile nature.
  • The rapid increase in plastic production and usage has led to significant waste disposal challenges, impacting both the environment and human health, while also contributing to the depletion of fossil fuels.
  • The study explores pyrolysis as a promising recycling method to convert waste polypropylene plastic into alternative fuels, evaluating its properties compared to diesel and their potential for engine use.

Article Abstract

Plastics are basically long-chain hydrocarbon compound synthesizes from nonrenewable liquid petroleum products. Since plastics have special and variety of features such as easy availability and handling, light weight, energy efficiency, nondegradable nature, cheap, faster production, and design flexibility, it has gained wide popularity in short time period and has become indispensable part of day-to-day life. The increasing usage and production of plastic with exponential rate have resulted in increasing plastic waste disposal problems which may cause adverse effect on environment and human health. Moreover, fast exhaustion of nonrenewable fossil fuel has also become a major problem. To encounter both the problem at a same time, plastic waste conversion method has come into picture. Several plastic waste conversion methods such as landfills, plastic incineration, and recycling are available out of which recycling has gained a lot of interest. One of the important recycling methods is pyrolysis, which is referred as most suitable method due to its advantages such as flexible, easy in handling, less intense sorting, less labor intensive, and high-quality liquid oil extraction. The gaseous by-product also has high calorific value. In the present study, an attempt has been made to produce alternative fuel from waste polypropylene plastic. The study further aims to compare the properties of the obtained WPPO with diesel and blend of WPPO and diesel to ascertain its feasibility for engine runs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685314PMC
http://dx.doi.org/10.1155/tswj/6317016DOI Listing

Publication Analysis

Top Keywords

plastic waste
16
plastic
8
polypropylene plastic
8
waste conversion
8
wppo diesel
8
waste
6
experimental investigation
4
investigation extraction
4
extraction characterization
4
characterization waste
4

Similar Publications

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Upcycling polynorbornene derivatives into chemically recyclable multiblock linear and thermoset plastics.

Angew Chem Int Ed Engl

January 2025

Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Investigating macro marine litter and beach cleanliness along Southern Vietnam beaches.

Mar Pollut Bull

January 2025

Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea. Electronic address:

Plastic contamination is a major issue for marine ecosystems, with macro-litter posing a growing threat globally. This study assesses macro-marine litter on Vung Tau beaches, Southern Vietnam, providing baseline data for marine litter pollution and identifying critical action plans for plastic control. Survey results showed litter density ranging from 0.

View Article and Find Full Text PDF

Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review.

Sci Total Environ

January 2025

Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!