A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electron Transport in Soft-Crystalline Thin Films of Perylene Diimide Substituted with Swallow-Tail Terminal Alkyl Chains. | LitMetric

Electron Transport in Soft-Crystalline Thin Films of Perylene Diimide Substituted with Swallow-Tail Terminal Alkyl Chains.

J Phys Chem C Nanomater Interfaces

Institut Parisien de Chimie Moléculaire, Chimie des Polymères, UMR CNRS 8232, Sorbonne Université, 4 place Jussieu, Paris 75005, France.

Published: December 2024

AI Article Synopsis

  • The study analyzes the structural and electron transport properties of a specialized swallow-tailed PDI derivative in thin film form.
  • The research reveals that thermal processing creates a new soft-crystalline mesophase, enhancing charge transport properties in organic field-effect transistors (OFETs).
  • Improvements in device architecture and preparation methods lead to increased electron mobility and overall performance, establishing melt-processing as an effective fabrication technique for high-performance OFETs.

Article Abstract

We have examined the structural and electron transport properties of a swallow-tailed ,'-bis(1-heptyloctyl)-perylene-3,4:9,10-bis(dicarboximide) () in thin films. A comprehensive analysis of material with the use of X-ray scattering methods evidenced the appearance of a new soft-crystalline mesophase that was induced by thermal processing of the swallow-tail PDI derivative. By combining electrical measurements with grazing-incidence wide-angle X-ray scattering (GIWAXS), we show that these morphological changes of thin films boost their charge transport in the organic field-effect transistor (OFET) configuration. The systematic device engineering of OFETs, including device architecture, thermal history, and preparation method of the active layer, resulted in a significant improvement in the electron field-effect mobility and the related performance parameters. In particular, the results demonstrate a strong improvement in the charge transport of films in their soft-crystalline phase, which originates from the -substitution by swallow-tails. In addition, our study demonstrates that the melt-processing route, a solvent-free and vacuum-free method for the fabrication of organic thin films, represents an efficient strategy for the fabrication of high-performance air-stable -type OFETs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684020PMC
http://dx.doi.org/10.1021/acs.jpcc.4c06222DOI Listing

Publication Analysis

Top Keywords

thin films
16
electron transport
8
x-ray scattering
8
charge transport
8
films
5
transport soft-crystalline
4
thin
4
soft-crystalline thin
4
films perylene
4
perylene diimide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!