DJ-1 as a Novel Therapeutic Target for Mitigating Myocardial Ischemia-Reperfusion Injury.

Cardiovasc Ther

Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China.

Published: January 2025

Ischemic heart disease (IHD) remains one of the most prominent causes of mortality and morbidity globally, and the risk of ischemia-reperfusion injury is becoming more severe and constant. This underscores the need to develop new methods to protect the heart from damage. DJ-1 is a multifunctional intracellular protein encoded by the gene that plays roles in processes including the control of autophagy, the preservation of mitochondrial integrity, the prevention of apoptosis, and the elimination of oxidative stress. DJ-1 has recently been the focus of growing interest as a target molecule relevant to treating myocardial ischemia-reperfusion injury due to its protective properties and its role in cellular response mechanisms. Consistently, DJ-1-related interventions, such as its exogenous administration or the use of pharmacological agents, have been demonstrated to help protect the myocardium from ischemia-reperfusion injury and associated adverse outcomes. This review provides an overview of DJ-1 and its therapeutic relevance in the myocardium in the setting of ischemia and reperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661871PMC
http://dx.doi.org/10.1155/cdr/6615720DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
16
myocardial ischemia-reperfusion
8
dj-1
4
dj-1 novel
4
novel therapeutic
4
therapeutic target
4
target mitigating
4
mitigating myocardial
4
ischemia-reperfusion
4
injury
4

Similar Publications

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Objectives: Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis.

View Article and Find Full Text PDF

Chemiluminescent Probe for Enhanced Visualization of Renal Ischemia-Reperfusion Injury via Pyroglutamate Aminopeptidase-1 Activation.

Anal Chem

January 2025

Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.

The absence of an effective imaging tool for diagnosing renal ischemia-reperfusion injury (RIRI) severely delays its treatment, and currently, no definitive clinical interventions are available. Pyroglutamate aminopeptidase-1 (PGP-1), a potential inflammatory cytokine, has shown considerable potential as a biomarker for tracing the inflammatory process in vivo. However, its exact role in the enhanced visualization of RIRI in complex biological systems has yet to be fully established.

View Article and Find Full Text PDF

A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!