Exercise has been increasingly recognized as a potential influencer of the gut microbiome. Nevertheless, findings remain incongruous, particularly in relation to sport-specific patterns. In this study, we harness all publicly available data from athlete gut microbiome shotgun studies to explore how exercise may influence the gut microbiota through metagenomic assembly supplemented with short read-based taxonomic profiling. Through this analysis, we provide insights into exercise-associated taxa and genes, including the identification and annotation of putative novel species from the analysis of approximately 2,000 metagenome-assembled genomes (MAGs), classified as high-quality (HQ) MAGs and assembled as part of this investigation. Our metagenomic analysis unveiled potential athlete-associated microbiome patterns at both the phylum and species levels, along with their associated microbial genes, across a diverse array of sports and individuals. Specifically, we identified 76 species linked to exercise, with a notable prevalence of the phylum. Furthermore, our analysis detected MAGs representing potential novel species across various phyla, including , , , , , , , and . In summary, this catalog of MAGs and their corresponding genes stands as the most extensive collection yet compiled from athletes. Our analysis has discerned patterns in genes associated with exercise. This underscores the value of employing shotgun metagenomics, specifically a MAG recovery strategy, for pinpointing sport-associated microbiome signatures. Furthermore, the identification of novel MAGs holds promise for developing probiotics and deepening our comprehension of the intricate interplay between fitness and the microbiome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684919 | PMC |
http://dx.doi.org/10.20517/mrr.2023.69 | DOI Listing |
Microbiome
January 2025
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFMol Med
January 2025
Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!