A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid model for refining gross primary productivity estimation by integrating multiple environmental factors. | LitMetric

AI Article Synopsis

  • Environmental factors contribute to uncertainty in estimating gross primary productivity (GPP) in current light use efficiency (LUE) models because basic formulas can't capture complex environmental impacts.
  • A new hybrid model called TL-CRF combines the random forest (RF) technique with a two-leaf LUE model to account for various ecological stressors and seasonal variations in canopy structure.
  • This integration enhances the accuracy of GPP estimates by merging strengths from both process-based and data-driven approaches.

Article Abstract

Environmental factors lead mainly to the uncertainty of gross primary productivity estimation in most light use efficiency (LUE, ε) models since the simple physical formulas are inadequate to fully express the overall constraint of diverse environmental factors on the maximum ε (ε). In contrast, machine learning has the natural potential to detect intricate patterns and relationships among various environmental variables. Here, we presented a hybrid model (TL-CRF) that utilizes the random forest (RF) technique to incorporate various ecological stress factors into the two-leaf LUE (TL-LUE) model, meanwhile, seasonal differences in the clumping index (CI) on a global scale are considered to adjust seasonal patterns of canopy structure. The comprehensive integration of complex environmental variables based on this RF submodule is conducive to scaling theoretical ε to actual ε as much as possible. The proposed TL-CRF model considerably improves global GPP estimation by complementing innate advantages between the process-based and data-driven models.•The seasonal CI averages in different stages of the leaf life cycle are estimated for different vegetation types on a global scale.•Various environmental stress factors are integrated via the RF technique.•The RF submodule is embedded into the TL-LUE model to establish a hybrid model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683257PMC
http://dx.doi.org/10.1016/j.mex.2024.103091DOI Listing

Publication Analysis

Top Keywords

hybrid model
12
environmental factors
12
gross primary
8
primary productivity
8
productivity estimation
8
environmental variables
8
stress factors
8
tl-lue model
8
environmental
6
factors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!