Performance Analysis of Pipe-Jacking Waste Soils Solidified with Quick Lime and Fly Ash under Balanced Earth Pressure Conditions.

ACS Omega

China Second Metallurgy Group Corporation Limited, Baotou, Inner Mongolia 014031, China.

Published: December 2024

AI Article Synopsis

  • The pipe-jacking method is effective for constructing underground structures but generates a significant amount of waste soil that requires individual treatment, different from shield-tunneling waste soils.
  • In this study, pipe-jacking waste soils were enhanced using 7% polyacrylamide (PAM) and 12% sodium-based bentonite, leading to improved properties.
  • The solidification of the waste soils with quick lime and fly ash was tested with various concentrations, showing that it increased soil strength by up to 16% while enhancing structural compactness and stability through the effects of PAM and sodium-based bentonite.

Article Abstract

With its advantages of high cross-sectional utilization, shallow depth, and uninterrupted surface road traffic, the pipe-jacking method has been widely used in underground passages, metro stations, and other projects. However, this leads to a large volume of pipe-jacking waste soils that must be processed. Pipe-jacking waste soils are different from shield-tunneling waste soils. Therefore, it is not appropriate to simply use the same treatment method for shield-tunneling waste soils in the treatment of pipe-jacking waste soils. In this study, pipe-jacking waste soil samples were improved with 7% polyacrylamide (PAM) and 12% sodium-based bentonite solutions, with good performance being achieved. Based on this, quick lime and fly ash were used in the solidification of pipe-jacking waste soils, and experiments with different solution concentrations and solidification material additions were conducted, involving tests of compression, freeze-thaw cycling, wet-dry cycling, and microstructure. The results indicate that within the ranges of PAM and sodium-based bentonite addition ratios applied in this study, the solidification effects of quick lime and fly ash will not be significantly reduced during the improvement processes of pipe-jacking waste soils under balanced earth pressure conditions. Instead, it was found that there was an increase of up to 16% in the strength of pipe-jacking waste soils. Structural compactness can be primarily enhanced by gelatinous PAM, while sodium-based bentonite can promote the formation of hydrated colloids (such as C-S-H) and fill soil pores with hydrated gelatinous bentonite particles, thereby enhancing soil stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684480PMC
http://dx.doi.org/10.1021/acsomega.4c09466DOI Listing

Publication Analysis

Top Keywords

waste soils
36
pipe-jacking waste
32
quick lime
12
lime fly
12
fly ash
12
sodium-based bentonite
12
waste
10
pipe-jacking
9
soils
9
balanced earth
8

Similar Publications

The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.

View Article and Find Full Text PDF

Migration and risk assessment of heavy metals from swine manure in an organic fertilizer - soil - ryegrass - rex rabbit system: Based on field trials.

Sci Total Environ

January 2025

Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:

Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.

View Article and Find Full Text PDF

Extracellular hydrolytic activity (phospholipase, protease and hemolysin production) was evaluated in 178 strains of potentially pathogenic ascomycetous (Candida parapsilosis, Candida tropicalis) and basidiomycetous (Rhodotorula mucilaginosa) yeasts isolated from the excreta of Mew Gulls. Two bird colonies, one nesting in a natural habitat and the other in an urban habitat at the landfill, were studied simultaneously during their 7-month breeding season. Significant differences in phospholipase and protease production were found between natural and anthropophized strains.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

Bioearth recovered from landfill mining of old dumpsites: a potential resource or reservoir of toxic pollutants.

Environ Sci Pollut Res Int

January 2025

Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.

Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!