The wetting process of coal seam water injection is a typical unsaturated flow, but the steady-state method for measuring liquid permeability cannot reflect the unsaturated flow process of water in coal. The principle of wetting and expanding process of liquid in coal medium is very complex, and the multiscale pore characteristics of coal make the liquid permeability show multiscale characteristics. Therefore, liquid-phase triaxial seepage experiments under different working conditions are carried out, and a one-way multiscale dynamic apparent permeability coefficient model () = exp(-β) is established to analyze the influence of pressure, liquid wettability, and pore structure on the unsaturated wetting process of coal seam water injection. The results show that the apparent permeability coefficient of liquid phase decreases gradually with time due to the multiscale pore characteristics of coal. The dynamic apparent permeability coefficient model can well describe the unsaturated seepage process of liquid in coal, which is helpful to characterize the liquid permeability of low permeability coal seam. The water injection pressure has a great influence on the attenuation coefficient of apparent permeability coefficient, and the higher the water pressure is, the smaller the attenuation coefficient is. The surfactant increases the permeability coefficient by enhancing the capillary wetting, while the capillary force, as an internal factor, has less influence on the model attenuation coefficient than the water pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683630 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08908 | DOI Listing |
Sci Rep
January 2025
School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.
View Article and Find Full Text PDFSci Rep
January 2025
Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Precise estimation of rock petrophysical parameters are seriously important for the reliable computation of hydrocarbon in place in the underground formations. Therefore, accurately estimation rock saturation exponent is necessary in this regard. In this communication, we aim to develop intelligent data-driven models of decision tree, random forest, ensemble learning, adaptive boosting, support vector machine and multilayer perceptron artificial neural network to predict rock saturation exponent parameter in terms of rock absolute permeability, porosity, resistivity index, true resistivity, and water saturation based on acquired 1041 field data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology, Ahvaz, Iran.
Smart water injection (SWI) is a practical enhanced oil recovery (EOR) technique that improves displacement efficiency on micro and macro scales by different physiochemical mechanisms. However, the development of a reliable smart tool to predict oil recovery factors is necessary to reduce the challenges related to experimental procedures. These challenges include the cost and complexity of experimental equipment and time-consuming experimental methods for obtaining the recovery factor (RF).
View Article and Find Full Text PDFACS Omega
December 2024
School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China.
3D Print Addit Manuf
October 2024
Design Department, Gemmological Institute, China University of Geosciences, Wuhan, P.R. China.
Direct ink writing of multiple mineral materials (M) coupled with simulation analysis is an optimization solution in accordance with low-carbon and sustainable manufacturing. It improves the ability to imitate natural biological iterative optimization, and accurately obtained data for geological model tests to effectively help prevent natural disasters. This article investigates the effects of equivalent materials on the direct ink writing and permeability behaviors through geological simulation models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!