Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Raman spectroscopy has been proven to be a fast, convenient, and nondestructive technique for advancing our understanding of biological systems. The Raman effect originates from the inelastic scattering of light which directly probe vibration/rotational states in biological molecules and materials. Despite numerous advantages over infrared spectroscopy and continuous technical as well as operational improvement in Raman spectroscopy, an advanced development of the device and more applications have become possible. In this review, we explore the principles, techniques, and myriad applications of Raman spectroscopy in the realm of biology. We begin by providing an overview of Raman spectroscopy, highlighting its significance in unraveling the complexities of biological research. The focus of this review is on Raman spectroscopy concepts and methods, clarifying the fundamentals of Raman scattering and spectral interpretation. The review also highlights the key experimental considerations for productive biological applications. We explore the broad range of Raman applications including molecular structure, biomolecular composition, disease detection, and medication discovery. The Raman imaging and mapping can also be used to visualize biological samples at the molecular level. Raman spectroscopy is still developing, giving fresh insights and remedies, from biosensing to its use in tissue engineering and regenerative medicine. This review sheds light on the past, present, and future of Raman spectroscopy; it also highlights promising directions of future research developments and serves as a thorough resource for all researchers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683638 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00591 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!