A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images. | LitMetric

AI Article Synopsis

  • This study explored how well machine learning models using mpMRI radiomic features can classify Gleason grade groups (GG) in prostate cancer.
  • It involved analyzing data from 203 patients who had pre-biopsy mpMRI scans, using various feature selection methods and machine learning classifiers to assess model performance.
  • The best-performing model achieved impressive accuracy and sensitivity (97.0% and 98.0% respectively) for classifying prostate cancer into five GG categories, demonstrating the effectiveness of this non-invasive approach.

Article Abstract

Purpose: This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.

Methods: In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).

Results: On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.

Conclusion: Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.

Advances In Knowledge: Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687675PMC
http://dx.doi.org/10.4103/jmss.jmss_47_23DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
classification prostate
12
high b-value
12
machine learning
8
learning models
8
prostate
8
magnetic resonance
8
resonance imaging
8
mpmri radiomic
8
rfs extracted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!