The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in linking the glycolysis pathway and the tricarboxylic acid (TCA) cycle. Previously, we reported that a mutation of , encoding an E1β subunit of PDC, affects the abundance of auxin efflux carriers PIN-FORMED proteins (PINs) via reduced recycling and enhanced degradation in vacuoles. Here, we further analyzed the effects of TCA cycle inhibition on vesicle trafficking using both the mutant and 3-BP, a TCA cycle inhibitor. Pharmacological and genetic impairment of the TCA cycle induced the aggregated components of ARA6, which is a plant-unique RAB5 GTPase that mediates endosomal trafficking to the plasma membrane. In addition, MAB4, which is an NPH3-like protein that inhibits PIN internalization from the plasma membrane, was severely reduced in 3-BP-treated roots and . Furthermore, TCA cycle impairment led to the accumulation of reactive oxygen species in root tips, and treatment with HO reduced MAB4 levels while increasing the internalization of PIN2 from the plasma membrane, and aggregated ARA6-positive compartments. These results suggest that TCA cycle impairment targets PIN proteins for degradation in the vacuole by disrupting both the MAB4-mediated block of internalization and the ARA6-mediated endocytic pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686435 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1462235 | DOI Listing |
EMBO Rep
January 2025
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.
View Article and Find Full Text PDFNat Metab
January 2025
CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
Resting natural killer (NK) cells display immediate effector functions after recognizing transformed or infected cells. The environmental nutrients and metabolic requirements to sustain these functions are not fully understood. Here, we show that NK cells rely on the use of extracellular pyruvate to support effector functions, signal transduction and cell viability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Baylor College of Medicine, Houston, TX, USA.
Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: We aim to investigate efficacies of Ras homolog (Rho)-associated kinases (ROCK) inhibitors on Alzheimer's disease (AD) pathological proteins in human induced pluripotent stem cell (iPSC)-differentiated human neurons and the P301S tau transgenic mouse model (PS19).
Method: Quantitative liquid chromatography-mass spectrometry (LC-MS/MS) and targeted ELISA were implemented to investigate the effect of treatment with fasudil or its derivatives on the human neurons and brains from PS19 mice. We explored the efficacy of these ROCK inhibitors in reducing tau phosphorylation, and the brain proteomic profiles after their administration in mice.
Alzheimers Dement
December 2024
Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
Background: The Apolipoprotein-E (APOE) ε4 gene variant is the strongest genetic risk factor for late-onset Alzheimer's Disease, but is not entirely predictive. Emerging evidence suggests environmental factors contribute to disease etiology, with epidemiological studies associating pesticide exposure with lower cognitive scores. Dichlorodiphenyltrichloroethane (DDT), a pesticide used extensively in the US until 1972, persists in trace amounts due to its long half-life, bioaccumulation, and existing dumpsites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!