A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitigating inflammation and fibrosis: the therapeutic potential of quercetin liposomes in COPD. | LitMetric

AI Article Synopsis

  • Chronic obstructive pulmonary disease (COPD) is a serious health issue marked by inflammation and lung damage, and Quercetin (Que) shows potential as a treatment, but its effectiveness is limited due to poor solubility.
  • This study created a novel liposome (Que-lipo) for better delivery of Que and tested it on mice with COPD induced by cigarette smoke, examining its effects on inflammation and lung health.
  • Results indicated that Que-lipo enhanced the solubility and uptake of Que, reduced lung inflammation and fibrosis, and positively influenced key proteins related to cell death, showcasing its potential as a therapeutic option for COPD.

Article Abstract

Introduction: Chronic obstructive pulmonary disease (COPD) is a disease with severe therapeutic obstacles and high worldwide death rate. COPD progresses predominantly through inflammatory response followed by fibrotic destruction. Quercetin (Que), recognized for its anti-inflammatory effects, presents significant promise as a therapeutic candidate for COPD therapy. However, poor water solubility and low bioavailability of Que hinder its further clinical application. Liposomes are renowned for their unique structure and function, which provided an efficient approach for the delivery of Que in various drug delivery systems. This study was aim to prepare a novel Que liposome (Que-lipo) and administrated via intratracheal (i.t.) with cigarette smoke induced COPD mice. The underlying therapeutic mechanisms against lung damage of Que-lipo were explored.

Methods: Que-lipo were prepared based on thin film dispersion method and administrated via intratracheal administration. The cigarette smoke induced COPD mice were established and a comprehensive approach was employed to explore the inflammation, pulmonary function and histopathology of lung after i.t. administration of Que-lipo, including enzyme-linked immunosorbent assay, histopathology and immunohistochemistry, reverse transcription-quantitative polymerase chain reaction.

Results And Discussion: Que-lipo not only improved the solubility and biocompatibility of Que but also demonstrated effective cellular uptake . The inflammation, pulmonary function and pathological condition of lung were improved after i.t. administration of Que-lipo. Que-lipo also regulated the expression of key apoptosis-associated proteins such as Bcl-2 and caspase-3/7, leading to significant inhibition of apoptotic activity in COPD. Furthermore, Que-lipo markedly enhanced its ability to alleviate lung inflammation and fibrosis symptoms by modulating inflammation-related factors and fibrosis signaling molecules. The potential mechanisms of Que-lipo in treating COPD were elucidated, including the suppression of the NLRP3/IL-1β inflammasome pathway and the TGF-β1-related fibrosis signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685140PMC
http://dx.doi.org/10.3389/fphar.2024.1503283DOI Listing

Publication Analysis

Top Keywords

que-lipo
9
inflammation fibrosis
8
copd
8
administrated intratracheal
8
cigarette smoke
8
smoke induced
8
induced copd
8
copd mice
8
inflammation pulmonary
8
pulmonary function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!