A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SINEUP RNA rescues molecular phenotypes associated with CHD8 suppression in Autism Spectrum Disorder model systems. | LitMetric

AI Article Synopsis

  • Loss-of-function mutations in the CHD8 gene are linked to Autism Spectrum Disorders (ASD), leading to significant molecular and cellular changes relevant for developing new therapies.
  • Synthetic SINEUP-CHD8, a type of long non-coding RNA, can increase the production of the CHD8 protein in cells lacking it, and reverse associated negative effects in cells from patients with CHD8 mutations.
  • In zebrafish models, SINEUP-CHD8 not only alleviated symptoms caused by CHD8 suppression, like macrocephaly and excessive neuron production, but also suggests potential for RNA-based treatments for various neurodevelopmental disorders.

Article Abstract

Loss-of-function mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are strongly associated with Autism Spectrum Disorders (ASD). Indeed, the reduction of CHD8 causes transcriptional, epigenetic and cellular phenotypic changes correlated to disease, that can be monitored in assessing new therapeutic approaches. SINEUPs are a functional class of natural and synthetic antisense long non-coding RNAs able to stimulate the translation of sense target mRNA, with no effect on transcription. Here we employed synthetic SINEUP-CHD8 targeting the first and third AUG of the CHD8 coding sequence to efficiently stimulate endogenous CHD8 protein production. SINEUP-CHD8 were effective in cells with reduced levels of the target protein and in patients'-derived fibroblasts with CHD8 mutations. Functionally, SINEUP-CHD8 were able to revert molecular phenotypes associated with CHD8-suppression, i.e. genome-wide transcriptional dysregulation, and the reduction of H3K36me3 levels. Strikingly, in chd8-morpholino-treated and ENU mutant zebrafish embryos, SINEUP-chd8 injection confirmed the ability of SINEUP RNA to rescue the chd8-suppression-induced macrocephaly phenotype and neuronal hyperproliferation. Thus, SINEUP-CHD8 molecule(s) represent a proof-of-concept towards the development of a RNA-based therapy for neurodevelopmental syndromes with implications for, and beyond ASD, and relevant to genetic disorders caused by protein haploinsufficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2024.12.043DOI Listing

Publication Analysis

Top Keywords

sineup rna
8
molecular phenotypes
8
phenotypes associated
8
autism spectrum
8
chd8
6
sineup-chd8
5
rna rescues
4
rescues molecular
4
associated chd8
4
chd8 suppression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!