Objective: This study aims to investigate the molecular mechanisms by which YWHAG (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Gamma) promotes metastasis in bladder cancer. Specifically, it seeks to elucidate the role of YWHAG in driving cancer cell invasion and its potential as a prognostic marker for bladder cancer progression.

Methods: The expression pattern of YWHAG in both primary and metastatic bladder cancer tissues was analyzed using immunohistochemistry (IHC) to determine its correlation with clinical stage and prognosis in bladder cancer patients. The functional role of YWHAG in bladder cancer progression was examined through a series of in vitro and in vivo experiments. Transcriptome sequencing was employed to identify the key signaling pathways regulated by YWHAG. The interaction between YWHAG and TMOD3 (Tropomodulin 3) was confirmed through pull-down assays coupled with mass spectrometry, co-immunoprecipitation (Co-IP), and cell immunofluorescence studies. Finally, TMOD3 knockdown experiments were conducted to verify whether the pro-metastatic effects of YWHAG in bladder cancer are mediated through TMOD3.

Results: YWHAG expression was significantly elevated in metastatic bladder cancer tissues compared to primary tumor tissues, and its expression positively correlated with advanced clinical stages and poor prognosis in patients. In vitro and in vivo experiments demonstrated that YWHAG knockdown significantly reduced the invasive, metastatic, and colonization capabilities of bladder cancer cells. Transcriptome analysis revealed that YWHAG knockdown markedly inhibited the phosphorylation of ERK1/2 (extracellular signal-related kinases 1 and 2) and JNK (JUN N-terminal kinases), key components of the MAPK (mitogen-activated protein kinase) signaling pathway. Mechanistically, YWHAG was found to promote bladder cancer cell invasion and metastasis by regulating TMOD3, which subsequently activates the MAPK pathway.

Conclusion: YWHAG upregulates TMOD3 expression, leading to the activation of ERK1/2 phosphorylation in the MAPK pathway, thereby promoting the invasion and metastasis of bladder cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687020PMC
http://dx.doi.org/10.1186/s12967-024-06003-yDOI Listing

Publication Analysis

Top Keywords

bladder cancer
44
ywhag
13
cancer
12
bladder
11
metastasis regulating
8
regulating tmod3
8
phosphorylation mapk
8
mapk pathway
8
metastasis bladder
8
role ywhag
8

Similar Publications

Long-term use of low-dose aspirin has been demonstrated to reduce cancer risk, but the duration of necessary medication use remains uncertain. This study aimed to investigate the long-term chemoprotective effect of aspirin among the Chinese population. This population-based study included all aspirin users between 2000 and 2019.

View Article and Find Full Text PDF

Objectives: To evaluate the benefit of neoadjuvant chemotherapy (NAC) for patients with high-risk upper tract urothelial carcinoma (UTUC) using a large, well-curated multi-institutional database.

Patients And Methods: This study was a multi-institutional retrospective analysis conducted by the UTUC Collaborative Network (UCAN), combining data from 2276 patients with UTUC who underwent radical nephroureterectomy at seven high-volume tertiary care centres in the United States. The UCAN data were analysed to evaluate the impact of response to NAC on survival outcomes in patients with UTUC.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.

View Article and Find Full Text PDF

Clinical translation of the interconnected role of the microbiome and diet in genitourinary malignancies.

Urol Oncol

January 2025

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD. Electronic address:

A complex and often under-appreciated relationship exists between the human microbiome, diet, and the development or progression of cancer. There is likewise an emerging appreciation for the role that the human-associated microbiota play in mediating cancer treatment response. This seminar series covers our current understanding of the interplay between the microbiome and cancer in genitourinary malignancies inclusive of bladder, kidney, and prostate cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!