Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For surface electromyography (sEMG) based human-machine interaction systems, accurately recognizing the users' gesture intent is crucial. However, due to the existence of subject-specific components in sEMG signals, subject-specific models may deteriorate when applied to new users. In this study, we hypothesize that in addition to subject-specific components, sEMG signals also contain pattern-specific components, which is independent of individuals and solely related to gesture patterns. Based on this hypothesis, we disentangled these two components from sEMG signals with an auto-encoder and applied the pattern-specific components to establish a general gesture recognition model in cross-subject scenarios. Furthermore, we compared the characteristics of the pattern-specific information contained in three categories of EMG measures: signal waveform, time-domain features, and frequency-domain features. Our hypothesis was validated on an open source database. Ultimately, the combination of time- and frequency-domain features achieved the best performance in gesture classification tasks, with a maximum accuracy of 84.3%. For individual feature, frequency-domain features performed the best and were proved most suitable for separating the two components. Additionally, we intuitively visualized the heatmaps of pattern-specific components based on the topological position of electrode arrays and explored their physiological interpretability by examining the correspondence between the heatmaps and muscle activation areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12984-024-01526-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11689514 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!