A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of independent training and test samples. | LitMetric

Given the heterogeneous nature of attention-deficit/hyperactivity disorder (ADHD) and the absence of established biomarkers, accurate diagnosis and effective treatment remain a challenge in clinical practice. This study investigates the predictive utility of multimodal data, including eye tracking, EEG, actigraphy, and behavioral indices, in differentiating adults with ADHD from healthy individuals. Using a support vector machine model, we analyzed independent training (n = 50) and test (n = 36) samples from two clinically controlled studies. In both studies, participants performed an attention task (continuous performance task) in a virtual reality seminar room while encountering virtual distractions. Task performance, head movements, gaze behavior, EEG, and current self-reported inattention, hyperactivity, and impulsivity were simultaneously recorded and used for model training. Our final model based on the optimal number of features (maximal relevance minimal redundancy criterion) achieved a promising classification accuracy of 81% in the independent test set. Notably, the extracted EEG-based features had no significant contribution to this prediction and therefore were not included in the final model. Our results suggest the potential of applying ecologically valid virtual reality environments and integrating different data modalities for enhancing robustness of ADHD diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-024-03217-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688437PMC

Publication Analysis

Top Keywords

eye tracking
8
tracking eeg
8
eeg actigraphy
8
actigraphy behavioral
8
behavioral indices
8
independent training
8
virtual reality
8
final model
8
virtual
4
virtual reality-assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!