Exploring the role of exosomal lncRNA in cancer immunopathogenesis: Unraveling the immune response and EMT pathways.

Exp Cell Res

Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq. Electronic address:

Published: December 2024

Exosomes are membrane-bound vesicles secreted by diverse cell types, serving as crucial mediators in intercellular communication and significantly influencing cancer development. Exosomes facilitate complex signaling processes in the tumor microenvironment for immunomodulation, metastasis, angiogenesis, and treatment resistance. Notably, long non-coding RNAs (lncRNAs), a class of non-coding RNAs, engage with mRNA, DNA, proteins, and miRNAs to modulate gene expression through multiple mechanisms, including transcriptional, post-transcriptional, translational, and epigenetic pathways. The quantitative dynamics of exosomal lncRNAs show a consistent variation correlating with cancer progression and metastasis, suggesting their potential utility as biomarkers for cancer diagnosis and prognosis. Additionally, exosomal lncRNAs can yield critical insights into therapeutic responses in patients. The identification of exosomal lncRNAs as indicators for various cancer subtypes presents them not only as prognostic tools but also as promising therapeutic targets. Despite their potential, the precise functions of exosomal lncRNAs in the cancer biology landscape remain inadequately understood. This paper delves into the multifaceted roles of exosomal lncRNAs, particularly in the context of breast cancer, highlighting their promise for therapeutic applications. A thorough comprehension of exosomal lncRNAs is imperative for advancing our knowledge of the underlying mechanisms of breast cancer, ultimately paving the way for the development of more effective treatment strategies for patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2024.114401DOI Listing

Publication Analysis

Top Keywords

exosomal lncrnas
24
cancer
8
non-coding rnas
8
breast cancer
8
exosomal
7
lncrnas
7
exploring role
4
role exosomal
4
exosomal lncrna
4
lncrna cancer
4

Similar Publications

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.

View Article and Find Full Text PDF

Background: Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.

Methods: The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs.

View Article and Find Full Text PDF

Cardiac myxoma (CM) is an important aetiology of stroke in young adults, and its diagnosis is difficult in patients having stroke because of the lack of diagnostic biomarkers. Tumour-derived exosomes play a crucial role in tumour growth, metastasis, immune regulation, and monitor disease development. Hence,we established an RNA-sequencing dataset for long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) in the plasma and tumour-derived exosomes from four patients with cardiac myxoma-related ischaemic stroke (CM-IS) and six patients with cardiac myxoma without ischaemic stroke (non-IS CM).

View Article and Find Full Text PDF

Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!