The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network. Here, the results of single-cell RNA-seq indicated that the cell cycle drove cellular heterogeneity. The active populations engaged in PGC self-renewal and the characteristics of the aging cell fate have been identified. The active self-renewal populations presented a rising expression of DNA repair genes, couple with a high proportion of cells in G1/S phase and a low frequency of cells in G2 phase. Notably, Hippo, FoxO, AMPK and MAPK pathways are active within these populations. The combination of six activator or inhibitors, targeting these active pathways, resulted in a significantly higher proliferation rate of PGCs and an increased number of cells entering the G1 and S phases. Importantly, they greatly reduced the establishment time to a minimum of 26 days and increased the efficiency of male PGC line establishment to 59 % in FS medium. Our results provided several new insights into the PGCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.139136 | DOI Listing |
BMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.
View Article and Find Full Text PDFSci Rep
January 2025
Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Xining, Qinghai, China; Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China. Electronic address:
Osteosarcoma is an aggressive malignant bone tumor with an obscure etiology, as well as high prevalence and poor prognosis in children and adolescents. We aimed to investigate the pathogenesis of osteosarcoma through a comprehensive analysis of the tumor immune microenvironment (TIME) using multiple single-cell RNA sequencing datasets. SLC25A5, a gene implicated in cellular aging, significantly influenced osteosarcoma development by altering the TIME and promoting CD8+ T cell exhaustion, which contributed to reduced chemosensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!