A Comprehensive Review of Arsenic-Induced Neurotoxicity: Exploring the Role of Glial Cell Pathways and Mechanisms.

Chemosphere

Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Published: December 2024

The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells. These cells are crucial for preserving neural health and responding to environmental toxins, and arsenic disrupts their functions, resulting in decreased antioxidative responses, induction of inflammatory pathways, and subsequent neuronal dysfunction. The brain's cytotoxic impact arises from a complex network of cellular responses, with pathways such as MAPK, transcription factor and autophagy signaling to play critical roles in mediating these dysregulated inflammation and oxidative stress mechanisms. The detailed exploration into specific impacts of arsenic on glial cell morphology, activation, and mitochondrial functions illuminates the cascade of neuroinflammatory and neurodegenerative changes that may be triggered upon arsenic exposure. The review recommends a multidisciplinary research approach by emphasizing the significance of the brain's microenvironment, methylation processes, and the enzyme AS3MT in arsenic neurotoxicity. It calls for converging environmental science, neurobiology, and toxicology to develop targeted interventions for preventing and mitigating arsenic's neurotoxic effects. This in-depth exploration into glial cell dynamics aims to advance public health and neurotoxicology research, striving to devise strategies that reduce the cognitive and neurodegenerative damage caused by arsenic, thereby enhancing global health outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.144046DOI Listing

Publication Analysis

Top Keywords

glial cell
12
neurotoxic effects
8
oxidative stress
8
arsenic
6
glial
5
comprehensive review
4
review arsenic-induced
4
arsenic-induced neurotoxicity
4
neurotoxicity exploring
4
exploring role
4

Similar Publications

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Sepsis is a state of systemic immune dysregulation and organ failure that is frequently associated with severe brain disability. Epidemiological studies have indicated that younger females have better prognosis and clinical outcomes relative to males, though the sex-dependent response of the brain to sepsis during post-sepsis recovery remains largely uncharacterized. Using a modified polymicrobial intra-abdominal murine model of surgical sepsis, we characterized the acute effects of intra-abdominal sepsis on peripheral inflammation, brain inflammation and brain functional connectivity in young adult mice of both sexes.

View Article and Find Full Text PDF

Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development.

View Article and Find Full Text PDF

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!