The photocatalytic hydrogen (H) evolution reaction driven by solar energy is one of the most promising methods to alleviate energy and environmental problems. Regrettably, the rapid recombination of photogenerated electrons and hole pairs in semiconductor catalysts leads to low solar energy conversion efficiency. To address this problem, we chose the method of co-catalyst loading. This study uses an in-situ self-assembly growth strategy to load high-valent cobalt sulfide (CoS) onto bulk carbon nitride (BCN) for photocatalytic H evolution. The results show that the photocatalytic H evolution performance of the optimal ratio of CoS and BCN composite (CoS-BCN(15%)) is 156 times that of BCN. The main reason for the performance improvement is that CoS nanoparticles act as co-catalysts to increase the carrier migration rate. Moreover, CoS nanoparticles contain mixed-valence Co/Co. During the reaction, high-valence cobalt ions become electron transfer stations, reacting with additional electrons to generate low-valence ions, reducing the recombination of carriers. Additionally, combined experiments and theoretical calculations show that the CoS surface is more conducive to the precipitation of H than BCN. This study provides a reference for further exploring the mechanism of action of co-catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.12.198 | DOI Listing |
Nat Commun
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Life Sciences, School of Chemical Engineering, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang 330022, China.
The photocatalytic conversion of CO and HO into useful chemicals or fuels over semiconductor photocatalysts is regarded as a promising technology to address the problems of global warming and energy exhaustion. However, inefficient photo-absorption and slow charge dynamics limit the CO photoreduction efficiency. Here, a ternary heterojunction photocatalyst, CuCl(OH)/In/InO (Cu H IO), with an intimate interface is obtained a hydrogen chemical reduction approach followed by hydrolysis reaction, where In species can be produced on the surface of InO from the hydrogen chemical reaction with a calcining temperature of over 500 °C.
View Article and Find Full Text PDFNat Commun
January 2025
Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
Harvesting the energy from the interaction between hygroscopic materials and atmospheric water can generate green and clean energy. However, the ion diffusion process of moisture-induced dissociation leads to the disappearance of the ion concentration gradient gradually, and there is still a lack of moisture-based power generation devices with truly continuous operation, especially the duration of the current output still needs to be extended. Here, we propose a design for reconstructing the ion concentration gradient by coupling photocatalytic hydrogen evolution reaction with hydrovoltaic effect, to report a moisture-enabled electric generator (MEG) with continuous current output.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Oxygen and water generating hydrogen peroxide (HO) by optical drive is an extremely promising pathway, and the large amount of oxygen in air and natural sunlight illumination are excellent catalytic conditions. However, the separation efficiency of photogenerated electron-hole pairs greatly limits the photocatalytic efficiency, especially in the absence of sacrificial agents. Here, we report an InS nanosheet with an S vacancy (S-InS).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University of Technology, Institute for New Energy Materials and Low Carbon Technologies, 300384, Tianjin, CHINA.
Biphasic system not only presents a promising opportunity for complex catalytic processes, but also is a grand challenge in efficient tandem reactions. As an emerging solar-to-chemical conversion, the visible-light-driven and water-donating hydrogenation combines the sustainability of photocatalysis and economic-value of hydrogenation. However, the key and challenging point is to couple water-soluble photocatalytic hydrogen evolution reaction (HER) with oil-soluble hydrogenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!