Enhancing photocatalytic hydrogen evolution of carbon nitride through high-valent cobalt active sites in cobalt sulfide co-catalyst.

J Colloid Interface Sci

School of Materials Science & Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Zotye Automobile Co., Ltd, Jinhua 321399, PR China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Photocatalytic hydrogen production using solar energy is an effective solution for energy and environmental issues, but inefficiencies arise from the rapid recombination of charges in semiconductor catalysts.
  • Researchers used a co-catalyst loading strategy, specifically incorporating cobalt sulfide (CoS) onto bulk carbon nitride (BCN), to enhance photocatalytic performance for hydrogen production.
  • The optimal CoS-BCN composite (with 15% CoS) showed a performance improvement of 156 times compared to BCN alone, as CoS nanoparticles facilitate electron transfer and reduce charge recombination, enhancing hydrogen evolution efficiency.

Article Abstract

The photocatalytic hydrogen (H) evolution reaction driven by solar energy is one of the most promising methods to alleviate energy and environmental problems. Regrettably, the rapid recombination of photogenerated electrons and hole pairs in semiconductor catalysts leads to low solar energy conversion efficiency. To address this problem, we chose the method of co-catalyst loading. This study uses an in-situ self-assembly growth strategy to load high-valent cobalt sulfide (CoS) onto bulk carbon nitride (BCN) for photocatalytic H evolution. The results show that the photocatalytic H evolution performance of the optimal ratio of CoS and BCN composite (CoS-BCN(15%)) is 156 times that of BCN. The main reason for the performance improvement is that CoS nanoparticles act as co-catalysts to increase the carrier migration rate. Moreover, CoS nanoparticles contain mixed-valence Co/Co. During the reaction, high-valence cobalt ions become electron transfer stations, reacting with additional electrons to generate low-valence ions, reducing the recombination of carriers. Additionally, combined experiments and theoretical calculations show that the CoS surface is more conducive to the precipitation of H than BCN. This study provides a reference for further exploring the mechanism of action of co-catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.12.198DOI Listing

Publication Analysis

Top Keywords

photocatalytic hydrogen
8
hydrogen evolution
8
carbon nitride
8
high-valent cobalt
8
cobalt sulfide
8
solar energy
8
photocatalytic evolution
8
cos nanoparticles
8
cos
5
enhancing photocatalytic
4

Similar Publications

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Construction of ternary heterojunction photocatalyst CuCl(OH)/In/InO for boosted photocatalytic CO reduction performance.

Dalton Trans

January 2025

College of Life Sciences, School of Chemical Engineering, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang 330022, China.

The photocatalytic conversion of CO and HO into useful chemicals or fuels over semiconductor photocatalysts is regarded as a promising technology to address the problems of global warming and energy exhaustion. However, inefficient photo-absorption and slow charge dynamics limit the CO photoreduction efficiency. Here, a ternary heterojunction photocatalyst, CuCl(OH)/In/InO (Cu H IO), with an intimate interface is obtained a hydrogen chemical reduction approach followed by hydrolysis reaction, where In species can be produced on the surface of InO from the hydrogen chemical reaction with a calcining temperature of over 500 °C.

View Article and Find Full Text PDF

Harvesting the energy from the interaction between hygroscopic materials and atmospheric water can generate green and clean energy. However, the ion diffusion process of moisture-induced dissociation leads to the disappearance of the ion concentration gradient gradually, and there is still a lack of moisture-based power generation devices with truly continuous operation, especially the duration of the current output still needs to be extended. Here, we propose a design for reconstructing the ion concentration gradient by coupling photocatalytic hydrogen evolution reaction with hydrovoltaic effect, to report a moisture-enabled electric generator (MEG) with continuous current output.

View Article and Find Full Text PDF

Highly Efficient Photocatalytic HO Production under Ambient Conditions via Defective InS Nanosheets.

Langmuir

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Oxygen and water generating hydrogen peroxide (HO) by optical drive is an extremely promising pathway, and the large amount of oxygen in air and natural sunlight illumination are excellent catalytic conditions. However, the separation efficiency of photogenerated electron-hole pairs greatly limits the photocatalytic efficiency, especially in the absence of sacrificial agents. Here, we report an InS nanosheet with an S vacancy (S-InS).

View Article and Find Full Text PDF

Biphasic system not only presents a promising opportunity for complex catalytic processes, but also is a grand challenge in efficient tandem reactions. As an emerging solar-to-chemical conversion, the visible-light-driven and water-donating hydrogenation combines the sustainability of photocatalysis and economic-value of hydrogenation. However, the key and challenging point is to couple water-soluble photocatalytic hydrogen evolution reaction (HER) with oil-soluble hydrogenation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!