Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG). Studies on mechanism revealed that upon accumulation in tumor cells via in situ injection, MnO can react with overexpressed HO to generate Mn, O, and toxic OH. Additionally, MnO undergoes an oxidation-reduction reaction (redox) with glutathione (GSH), consuming GSH and generating Mn. The resulting Mn further participates in Fenton-like reactions with overexpressed HO within the tumor. Furthermore, under 808 nm laser, MPPMD NPs facilitate photothermal therapy (PTT), promoting the generation of reactive oxygen species (ROS), inducing oxidative stress, and reducing the adenosine triphosphate (ATP) level. Concurrently, the 2-DG loaded by MPPMD NPs disguised as glucose disrupts the glycolysis process, inhibiting ATP production, and effectively inducing tumor starvation therapy (ST). By leveraging the multifunctionality of MPPMD NPs, this work realized the disruption of redox homeostasis within tumor cells, providing potential strategies for multimodal tumor treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.12.163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!