Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressive nature and dismal prognosis, largely attributed to its unique tumor microenvironment. However, the molecular mechanisms by which tumor-associated macrophages (TAMs) promote PDAC progression, particularly the role of β-catenin signaling in regulating TAM phenotype and function, remain incompletely understood. Initially, we performed comprehensive analyses of RNA-seq and single-cell RNA-seq (scRNA-seq) datasets to investigate OSM and LOXL2 expression patterns in PDAC. Subsequently, the regulatory relationship between β-catenin and OSM in TAMs was examined using THP-1-derived macrophages. Furthermore, the functional impact of TAM-derived OSM on PDAC progression was evaluated through in vitro co-culture systems and an in vivo Panc02 lung metastasis model. Additionally, mechanistic studies employed pharmacological inhibitors and genetic approaches targeting β-catenin, OSM, and STAT3 signaling. Notably, elevated expression of OSM and LOXL2 in PDAC specimens significantly correlated with poor patient survival. Intriguingly, scRNA-seq analysis revealed that β-catenin signaling was uniquely activated in TAMs among immune cells, which consequently regulated both TAM polarization and OSM expression. These OSM-expressing TAMs exhibited a distinct hybrid M1/M2 phenotype. Besides, our transcriptional profiling of TAMs revealed concurrent activation of both pro- and anti-inflammatory programs, with enrichment in Wnt signaling pathways. RNA-seq analysis of PDAC cells exposed to TAM-derived factors demonstrated enhanced mesenchymal transition and stemness properties, with direct enrichment of OSM signaling and extracellular matrix remodeling pathways. Mechanistically, β-catenin activation directly regulated both TAM phenotype and OSM expression, while TAM-conditioned medium enhanced PDAC cell migration, invasion, and lung metastasis. Importantly, inhibition of β-catenin signaling simultaneously altered TAM polarization and reduced OSM expression, which substantially attenuated epithelial-mesenchymal transition (EMT) in co-cultured PDAC cells. Moreover, STAT3 inhibition abolished OSM-induced LOXL2 expression and subsequent EMT programming. Collectively, we identified a novel β-catenin/OSM-STAT3/LOXL2 signaling axis mediating TAM-induced PDAC progression. This pathway not only elucidates a previously unrecognized mechanism of β-catenin-mediated regulation of TAM function and phenotype but also presents potential therapeutic targets for intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neo.2024.101096DOI Listing

Publication Analysis

Top Keywords

tam phenotype
12
pdac progression
12
β-catenin signaling
12
osm expression
12
pdac
9
osm
9
osm loxl2
8
loxl2 expression
8
β-catenin osm
8
lung metastasis
8

Similar Publications

Embracing diversity: macrophage complexity in cancer.

Trends Cancer

January 2025

Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain. Electronic address:

Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics.

View Article and Find Full Text PDF

Background: Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8 T cells and subsequent tumor progression.

View Article and Find Full Text PDF

Gastric cancer-derived exosomal let-7 g-5p mediated by SERPINE1 promotes macrophage M2 polarization and gastric cancer progression.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.

Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressive nature and dismal prognosis, largely attributed to its unique tumor microenvironment. However, the molecular mechanisms by which tumor-associated macrophages (TAMs) promote PDAC progression, particularly the role of β-catenin signaling in regulating TAM phenotype and function, remain incompletely understood. Initially, we performed comprehensive analyses of RNA-seq and single-cell RNA-seq (scRNA-seq) datasets to investigate OSM and LOXL2 expression patterns in PDAC.

View Article and Find Full Text PDF

The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype.

Front Biosci (Landmark Ed)

December 2024

Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.

Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!