The pollution stemming from the unwarranted utilization and inadequate disposal of plastic products is undergoing rapid escalation. The problem of micro(nano)plastics (MNPs) pollution has recently garnered significant attention, and the issue of human exposure to MNPs cannot be disregarded. However, the present state of research concerning human exposure to MNPs remains in its early stages. The inherent uncertainty and variability associated with MNPs pose significant obstacles to conducting related studies. In order to enhance comprehension of the potential health risks associated with human exposure to MNPs, the utilization of zebrafish as an assessment tool was deemed appropriate. Zebrafish, as one of the most effective toxicological models, assume a significant role in both environmental monitoring and health modeling. This study provides a review of the effects of exposure to MNPs on zebrafish. The findings demonstrate that such exposure can elicit behavioral and physiological alterations in zebrafish, subsequently resulting in a range of toxic consequences. Simultaneously, this study conducts a comparative analysis of the effects of human and zebrafish exposure to MNPs in physiology, exposure environment, and toxicokinetic/toxicodynamic, leveraging the shared characteristics between zebrafish and humans to augment comprehension regarding human exposure to MNPs. Zebrafish model plays a key role in exploring gene expression in human homologous pathways caused by MNPs exposure, and strengthens the understanding of the risk of MNPs exposure. However, physiological, metabolic, and exposure circumstances limit its extrapolation to humans. Furthermore, the reference value and challenge associated with employing zebrafish as a model to discern human health hazards linked to MNPs are assessed, accompanied by suggestions for future research endeavors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123934 | DOI Listing |
Aquat Toxicol
December 2024
Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey. Electronic address:
The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFeOMNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX). Mussels were exposed to nominal concentrations of ZnFeOMNPs (1, 10, 100 mg/L) both individually and with TMX.
View Article and Find Full Text PDFEnviron Int
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China. Electronic address:
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, GREECE.
Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles (MNPs). However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy.
In recent years, awareness regarding micro-nanoplastics' (MNPs) potential effects on human health has progressively increased. Despite a large body of evidence regarding the origin and distribution of MNPs in the environment, their impact on human health remains to be determined. In this context, there is a major need to address their potential carcinogenic risks, since MNPs could hypothetically mediate direct and indirect carcinogenic effects, the latter mediated by particle-linked chemical carcinogens.
View Article and Find Full Text PDFNanoImpact
January 2025
Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
The influence of micro-nanoplastics (MNPs) on the fate and effects of other pollutants present in the environment is largely unknown. This study evaluated if the root exposure to MNPs (polystyrene, PS; 20 or 1000 nm) had an impact on the accumulation of arsenic and boscalid (As and Bos) in lettuce (Lactuca sativa). Under hydroponic conditions, plants were co-exposed to MNPs at 10 or 50 mg/L, and to 1 mg/L of each environmental pollutant (EP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!