Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.
Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.
Method: Research findings from experimental and clinical studies have been summarized regarding gingerols effects on the modulation of gut microbiome and its metabolites, and attenuation of disease symptoms.
Results: Gingerols are phenolic compounds characterized by a common 3-methoxy-4-hydroxyphenyl moiety in their chemical structures, and further divided into different gingerol types, including gingerols (major), shogaols, paradols, gingerdiols, gingerdiones, and zingerones (minor). Advanced extraction techniques (e.g., ionic liquid-based-, enzyme-assisted-, microwave-assisted-, pressurized liquid-, ultrasound-assisted-, and supercritical fluid extractions) were reported as optimal alternatives to conventional methods for gingerols extraction. Research studies reported that gingerols positively modulated the composition of gut microbiome that helped to combat disease symptoms (e.g., obesity by decreasing weight gain- (Lactobacillus reuteri and Lachnospiraceae) and increasing weight loss associated-bacteria (Akkermansia, Muribaculaceae, and Alloprevotella). Gingerols intervention also ameliorated ulcerative colitis by increasing relative abundance of the beneficial bacteria (Akkermansia, Lachnospiraceae NK4A136, and Muribaculaceae_norank), and decreasing pathogenic microorganisms (Bacteroides, Parabacteroides, and Desulfovibrio). Emerging delivery systems (e.g., microcapsules, nanoparticles, nanostructured lipid carriers, nanoemulsions, and nanoliposomes) can enhance the bioavailability and therapeutic efficacy of gingerols by preserving their inherent properties and addressing challenges of stability, solubility, and absorption.
Conclusion: Gingerols are promising therapeutic agents to modulate gut microbiome (increase beneficial bacteria and inhibit pathogenic microbes), and attenuate chronic disease symptoms such as diabetes, colitis, obesity, oxidative stress, and cancer. Despite significant progress, challenges persist in transforming research findings into industrial applications, such as stability and solubility during processing and low bioavailability in the distal gut to impart desirable health benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.156352 | DOI Listing |
Mol Med
January 2025
Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.
View Article and Find Full Text PDFMicrobiome
January 2025
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!