Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Endothelial-to-mesenchymal transition (EndMT) has been identified as a key factor to the initiation and progression of the pathogenesis of atherosclerosis (AS). Salvianic acid A (SAAS) is the primary water-soluble bioactive ingredient found in Salvia miltiorrhiza, is renowned for its therapeutic effects on cardiovascular diseases. However, the efficacy and mechanisms of SAAS in treating EndMT-induced AS remain underexplored.
Purpose: This study aimed to investigate the role SAAS in reversing EndMT process to impede AS development.
Methods: We used a murine model of cholesterol-rich and high-fat diet-induced AS in ApoE mice to evaluate the effect of SAAS on EndMT during AS progression in vivo. The biological effects of SAAS on EndMT-induced HUVEC cells were also detected by transcriptome sequencing (RNA-seq). Mechanistic exploration was carried out using omics data mining and screening, gene knockout experiments, gene expression, protein expression, and localization of key gene expression in animal lesion areas.
Results: We found that SAAS treatment significantly alleviated EndMT injury in the AS mice model and also improved aortic root lesions and dyslipidemia. Furthermore, pre-treatment with SAAS effectively inhibited the EndMT in HUVEC cells, as evidenced by maintained endothelial cell morphology and reduced cell migration ability, as well as elevated CD31 and decreased α-SMA. RNA sequencing data indicated that key differentially expressed genes were mainly enriched in metabolism-related and TGF-β receptor signaling pathways. The metabolic regulator PDK4 and profibrotic TGF-β receptor ALK5 were identified specifically. Subsequently, RT-qPCR and western blot results demonstrated that SAAS notably increased metabolic regulator PDK4 and decreased profibrotic TGF-β receptor ALK5 in EndMT-induced HUVEC cells. Moreover, siRNA-directed PDK4 inhibition resulted in EndMT induction and SAAS mediated the suppression of EndMT in a PDK4-dependent manner. Additionally, SAAS partially reduced the TGF-β receptor ALK5 expression. Furthermore, ApoE AS mice with SAAS treatment displayed downregulation of ALK5 and upregulation of PDK4 with reduced EndMT during AS.
Conclusion: This investigation demonstrated that SAAS improved AS through metabolic-dependent anti-EndMT pathway and repression of profibrotic TGF-β receptor signaling, thereby providing SAAS as a promising therapeutic candidate for managing AS and EndMT-related disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.156307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!