Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds. Highlighting compounds with superior trypanocidal activity compared to standard drugs. The study elucidates structure-activity relationships, emphasizing the impact of substituents, fluorine presence, and substitution patterns. Noteworthy findings include neolignan derivatives demonstrating efficacy against intracellular amastigotes and free-moving trypomastigotes, with unsaturated side chains. Benzeneacylhydrazones and chalcones, as novel classes, showed varied efficacy, with certain compounds surpassing benznidazole. A novel series of triketone compounds exhibited strong anti-parasitic activity, outperforming standard drugs. Docking study revealed that the halogen and methoxy substituted phenyl ring, thiazole, thiazolidine-4-one, quinoline, isoindoline-1,3-dione, pyrrole heterocyclic motifs can play the key role in the designing of effective inhibitors of T. cruzi. Mutually, these insights placed the foundation for the development of innovative and effective treatments for CD, addressing the urgent need for improved therapeutic options.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.117203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!