A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploiting historical agronomic data to develop genomic prediction strategies for early clonal selection in the Louisiana sugarcane variety development program. | LitMetric

Genomic selection can enhance the rate of genetic gain of cane and sucrose yield in sugarcane (Saccharum L.), an important industrial crop worldwide. We assessed the predictive ability (PA) for six traits, such as theoretical recoverable sugar (TRS), number of stalks (NS), stalk weight (SW), cane yield (CY), sugar yield (SY), and fiber content (Fiber) using 20,451 single nucleotide polymorphisms (SNPs) with 22 statistical models based on the genomic estimated breeding values of 567 genotypes within and across five stages of the Louisiana sugarcane breeding program. TRS and SW with high heritability showed higher PA compared to other traits, while NS had the lowest. Machine learning (ML) methods, such as random forest and support vector machine (SVM), outperformed others in predicting traits with low heritability. ML methods predicted TRS and SY with the highest accuracy in cross-stage predictions, while Bayesian models predicted NS and CY with the highest accuracy. Extended genomic best linear unbiased prediction models accounting for dominance and epistasis effects showed a slight improvement in PA for a few traits. When both NS and TRS, which can be available as early as stage 2, were considered in a multi-trait selection model, the PA for SY in stage 5 could increase up to 0.66 compared to 0.30 with a single-trait model. Marker density assessment suggested 9091 SNPs were sufficient for optimal PA of all traits. The study demonstrated the potential of using historical data to devise genomic prediction strategies for clonal selection early in sugarcane breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tpg2.20545DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685804PMC

Publication Analysis

Top Keywords

genomic prediction
8
prediction strategies
8
clonal selection
8
louisiana sugarcane
8
sugarcane breeding
8
highest accuracy
8
genomic
5
traits
5
exploiting historical
4
historical agronomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!