A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive performance of count regression models versus machine learning techniques: A comparative analysis using an automobile insurance claims frequency dataset. | LitMetric

Accurate forecasting of claim frequency in automobile insurance is essential for insurers to assess risks effectively and establish appropriate pricing policies. Traditional methods typically rely on a Poisson distribution for modeling claim counts; however, this approach can be inadequate due to frequent zero-claim periods, leading to zero inflation in the data. Zero inflation occurs when more zeros are observed than expected under standard Poisson or negative binomial (NB) models. While machine learning (ML) techniques have been explored for predictive analytics in other contexts, their application to zero-inflated insurance data remains limited. This study investigates the utility of ML in improving forecast accuracy under conditions of zero-inflation, a data characteristic common in automobile insurance. The research involved a comparative evaluation of several models, including Poisson, NB, zero-inflated Poisson (ZIP), hurdle Poisson, zero-inflated negative binomial (ZINB), hurdle negative binomial, random forest (RF), support vector machine (SVM), and artificial neural network (ANN) on an insurance dataset. The performance of these models was assessed using mean absolute error. The results reveal that the SVM model outperforms others in predictive accuracy, particularly in handling zero-inflation, followed by the ZIP and ZINB models. In contrast, the traditional Poisson and NB models showed lower predictive capabilities. By addressing the challenge of zero-inflation in automobile claim data, this study offers insights into improving the accuracy of claim frequency predictions. Although this study is based on a single dataset, the findings provide valuable perspectives on enhancing prediction accuracy and improving risk management practices in the insurance industry.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314975PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687910PMC

Publication Analysis

Top Keywords

automobile insurance
12
negative binomial
12
machine learning
8
learning techniques
8
claim frequency
8
poisson zero-inflated
8
models
6
insurance
6
poisson
6
predictive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!