A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups. | LitMetric

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups.

PLoS One

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

Published: December 2024

The leakage of Liquid scintillator exudates has brought potential harm to the environment. Attributed to the large specific surface area and high modifiability, high-performance adsorbents based on metal-organic frameworks (MOFs) can effectively remove organic pollutants. In this work, we use different functional groups to prepare the material of UIO-66(Zr). These materials were used to remove dimethyl sulfoxide (DMSO) from water, which is considered a typical liquid scintillator exudate. The results showed that the UIO-66-NH2 (154.3 mg/g) exhibited better adsorption performance compared to the UIO-66-OH (39.5 mg/g) and UIO-66-COOH (105.8 mg/g) for the removal of DMSO. Upon examining the adsorptive abilities of various samples of different UIO-66-NH2 samples, it was observed that the material's ability to adsorb is in a direct relationship with the -NH2 group concentration present in the substance, as evidenced by a correlation coefficient R2 of 0.99. Simultaneously, in the low concentration of environment, the samples of UIO-66 which load NH2 groups shows high removal effectiveness of over 90%. The adsorption capacity of the prepared materials was little affected by the complex water quality conditions and different initial pH values (between 4~10). Furthermore, the material has good reusability and adsorption capacity over five cycles, and slight zirconium release (< 5%). This optimal material showed significant removal capacity for DMSO. In conclusion, this work presents insight into the construction of advanced adsorbents for the removal of liquid scintillator exudates that have high adsorption capacity and strong potential for DMSO removal.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315753PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687881PMC

Publication Analysis

Top Keywords

liquid scintillator
16
scintillator exudates
12
adsorption capacity
12
removal liquid
8
functional groups
8
removal
6
scintillator
4
exudates metal
4
metal organic
4
organic frameworks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!