Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermal gravimetric analysis (TGA), and compressive modulus were used to characterize the biomineralized MBC (BMBC) samples. Using 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS), trypan blue dye exclusion (TBDE), and cell attachment assays on osteoblast cells, the developed BMBC have shown good cell viability, proliferation, and attachment after 3, 5, and 7 days of culture and therefore suggested as potential bone tissue regeneration scaffolding material.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312396PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687737PMC

Publication Analysis

Top Keywords

bacterial cellulose
8
scaffolding material
8
bone tissue
8
tissue regeneration
8
good cell
8
citrate-modified bacterial
4
cellulose potential
4
potential scaffolding
4
material bone
4
regeneration bacterial
4

Similar Publications

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Highly flexible free-standing bacterial cellulose-based filter membrane with tunable wettability for high-performance water purification.

Int J Biol Macromol

December 2024

Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:

Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.

View Article and Find Full Text PDF

The aim was to explore the efficiency of Tideglusib in bone tissue healing by carrying it with different scaffolds on rat calvarial lesions. Twentyfour male Dawley rats were utilized. Two bone defects of 5 mm in diameter were formed (n = 8).

View Article and Find Full Text PDF

As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!