AI Article Synopsis

  • Advances in technology for species identification have led to the development of a new field sampling method that integrates sensor data with automated processing.
  • The LIFEPLAN project employs five systematic field sampling methods, accessible to individuals with basic biology or ecology training, to gather biodiversity data globally.
  • The article details the steps for collecting various types of data, such as images, audio, invertebrate samples, soil, and air, while emphasizing the importance of metadata and acknowledging that technology and equipment will continue to evolve for improved data collection.

Article Abstract

As the technology for mass identification of species is advancing rapidly, we developed a field sampling method that takes advantage of the emerging possibilities of combining sensor-based data with automated high-throughput data processing. This article describes the five field sampling methods used by the LIFEPLAN project to collect biodiversity data in a systematic manner, all over the world. These methods are designed for use by anyone with basic biology or ecology knowledge from the higher education or university level. We present the selection and characteristics of international sampling locations for urban and natural sites, as well as the nested scale design in the Nordic countries and Madagascar. We describe the steps to collect sequences of animal images (.jpg) from infrared triggered camera traps, audio data (.WAV) of environment sounds from audio recorders, invertebrate samples in ethanol from Malaise traps for DNA metabarcoding, as well as both soil samples and 24-hour air samples obtained from cyclone samplers for fungal DNA metabarcoding. To ensure the usability and consistency of the data for future use, we pay particular attention to the metadata collected. In specifying the current sampling protocols, we note that technology will continue to improve and evolve. Hardware will also change within a short time period, with the advantage of improving the equipment used for collecting samples. Thus, we present examples of the samples collected by each current sampling method, to be used as a baseline or in comparison with different equipment models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687782PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313353PLOS

Publication Analysis

Top Keywords

field sampling
8
sampling method
8
dna metabarcoding
8
collected current
8
current sampling
8
sampling
6
data
5
samples
5
lifeplan worldwide
4
worldwide biodiversity
4

Similar Publications

Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of were investigated.

View Article and Find Full Text PDF

Technology-facilitated abuse (TFA) describes the misuse or repurposing of digital systems to harass, coerce, or abuse. It is a global problem involving both existing and emerging technologies. Despite significant work across research, policy, and practice to understand the issue, the field operates within linguistic, conceptual, and disciplinary silos, inhibiting collaboration.

View Article and Find Full Text PDF

Background: With early detection and improvements in systemic and local therapies, millions of people are surviving cancer, but for some at a high cost. In some cancer types, cardiovascular disease now competes with recurrent cancer as the cause of death. Traditional care models, in which the cardiologist or oncologist assess patients individually, do not address complex cancer and cardiovascular needs.

View Article and Find Full Text PDF

Background: Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus causing debilitating and potentially fatal disease in people in the Western Ghats region of India. The transmission cycle is complex, involving multiple vector and host species, but there are significant gaps in ecological knowledge. Empirical data on pathogen-vector-host interactions and incrimination have not been updated since the last century, despite significant local changes in land use and the expansion of KFD to new areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!