Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation. In a rat model of acute rotator cuff injury, Msx1-BMSCs embedded in a hydrogel scaffold were implanted at the tendon-bone junction. Micro-CT analysis revealed substantial new bone formation in the Msx1-BMSC group, and histological evaluation showed organized collagen and cartilage structures at the repair site. Biomechanical testing further confirmed enhanced structural strength in the Msx1-BMSC-treated group. These findings suggest that Msx1 modification enhances BMSC-mediated repair by promoting cell proliferation and migration, facilitating tendon-bone integration. This Msx1-based approach presents a promising strategy for advancing regenerative therapies for rotator cuff injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.26039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!