A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Msx1-Modified Rat Bone Marrow Mesenchymal Stem Cell Therapy for Rotator Cuff Repair: A Comprehensive Analysis of Tendon-Bone Healing and Cellular Mechanisms. | LitMetric

This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation. In a rat model of acute rotator cuff injury, Msx1-BMSCs embedded in a hydrogel scaffold were implanted at the tendon-bone junction. Micro-CT analysis revealed substantial new bone formation in the Msx1-BMSC group, and histological evaluation showed organized collagen and cartilage structures at the repair site. Biomechanical testing further confirmed enhanced structural strength in the Msx1-BMSC-treated group. These findings suggest that Msx1 modification enhances BMSC-mediated repair by promoting cell proliferation and migration, facilitating tendon-bone integration. This Msx1-based approach presents a promising strategy for advancing regenerative therapies for rotator cuff injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.26039DOI Listing

Publication Analysis

Top Keywords

rotator cuff
16
proliferation migration
12
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
tendon-bone healing
8
cuff injuries
8
msx1-modified rat
4
rat bone
4
stem cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!