SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure. The incorporation of trace amounts of Ag induces the formation of ZnO particles on the ZnAl-LDH surface, where both ZnO and Ag enhance UV light absorption. Interestingly, ZnAl-LDH-Ag shows a significantly high anticoronavirus effect upon exposure to the daylight lamp of the operation console and ultraviolet light. Moreover, ZnAl-LDH and ZnAl-LDH-Ag potently blocked the entry of SARS-CoV-2 pseudoparticles to cells. The in vivo biocompatibility experiment has demonstrated that ZnAl-LDH-Ag is a potentially biocompatible and potent anti-SARS-CoV-2 agent for virus prevention. The synergistic interactions between these nanoparticles continuously generate reactive oxygen species (ROS), leading to effective and sustained viral inactivation. This light-sensitive ROS production introduces a photocatalytic inactivation mechanism in antiviral materials. Moreover, unlike conventional antiviral agents that rapidly deplete their active components, the layered structure of this composite enables the controlled long-term release of antiviral radicals, enhancing its durability. ZnAl-LDH-Ag has been expected to be a promising solution for long-lasting antiviral applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c01204 | DOI Listing |
ACS Appl Bio Mater
December 2024
Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure.
View Article and Find Full Text PDFJ Sep Sci
November 2024
Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
In this study, in situ electrodeposition of Zn─Al-layered double hydroxides (Zn─Al-LDHs) on the surface of pencil graphite substrate were practiced with interlayer modification by ibuprofen. The prepared composite increases the efficiency of the proposed method by increasing the level of interaction between the sorbent and the selected analytes including acetylsalicylic acid and naproxen (NAP) in real sample. Eventually, the extracted target analytes were injected into high-performance liquid chromatography ultraviolet (HPLC-UV) for their measurement.
View Article and Find Full Text PDFLangmuir
November 2024
School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou 341000, Jiangxi, China.
Different Zn/Al ratios of Cl intercalated ZnAl-layered double hydroxide (ZnAl-LDH) were prepared using the coprecipitation method, and their adsorption performance for Cu in aqueous solution was evaluated. The factors affecting adsorption properties, such as dosage, reaction time, and pH, were determined by adsorption experiments. Then, the adsorption kinetics and isotherm models were fitted to evaluate the adsorption mechanism.
View Article and Find Full Text PDFChem Asian J
January 2025
Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Layered double hydroxides (LDHs) have been regarded as excellent catalysts for a variety of photocatalytic applications including the hydrogen production, carbon dioxide reduction, and nitrogen fixation, et al. The elucidation of the photocatalytic mechanism of LDH-based photocatalysts under light irradiation, especially at the ultraviolet (UV) and deep ultraviolet (DUV) region, at the molecular level has remained elusive. In this study, the photo-induced electronic structure of ZnAl-LDH materials was investigated, and a comprehensive understanding of its underlying mechanism, both in the UV and DUV region, was gained using density functional theory (DFT) calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Materials Science and Engineering, Chungnam National University, Daedeok Science Town, 34134 Daejeon, Republic of Korea.
Developing self-powered and flexible optoelectronic sensors with high responsivity and speed is crucial for modern applications, motivating continuous efforts to enhance their performance. Flexo-phototronics is a less-explored but promising technique to elevate the performance of optoelectronics. Therefore, this work addresses the potential of utilizing the flexo-phototronic effect to enhance the performance of a flexible and self-powered ultraviolet photodetector (UV PD) based on ZnAl:LDH (layered double hydroxides) nanosheets (Ns)/NiO heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!