Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Depression is a prevalent and significant psychological consequence of traumatic brain injury (TBI). Ferroptosis, an iron-dependent form of regulated cell death, exacerbates the neurological damage associated with TBI. This study investigates whether nicorandil, a potassium channel opener with nitrate-like properties known for its antioxidative and neuroprotective effects, can mitigate depression-like behaviors following TBI by modulating ferroptosis.
Methods: A controlled cortical impact (CCI) device was used to establish the TBI model. Depression-like behaviors in rats were assessed using the sucrose preference test (SPT), the tail suspension test (TST), and the forced swimming test (FST). The antioxidant system, lipid peroxidation, and ferroptosis levels were evaluated. The SLC7A11/GPX4 axis was analyzed using quantitative real-time PCR (qRT-PCR) and Western blot analysis.
Results: Nicorandil administration significantly ameliorated depression-like behaviors in rats with TBI. Nicorandil administration also effectively restored the antioxidant system, substantially reduced lipid peroxidation, and attenuated ferroptosis in the hippocampus of rats with TBI. Mechanistically, nicorandil administration promoted the SLC7A11/GPX4 axis in the hippocampus of rats with TBI. Crucially, knockdown of hippocampal SLC7A11 abrogated the protective effects of nicorandil on depression-like behaviors, lipid peroxidation, and ferroptosis in the hippocampus of rats with TBI.
Conclusion: These findings indicate that nicorandil ameliorates depression-like behaviors following TBI by inhibiting hippocampal ferroptosis through the activation of the SLC7A11/GPX4 axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/brb3.70199 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686086 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!