Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability. Interestingly, the anions effects do not mirror the empirical Hofmeister series, which describes the salting-in effects for such polymers in dilute aqueous solution, particularly evident in PSBP films with an approximately inverted order. PNIPMAM and PSBP-b-PNIPMAM exhibit pronounced deviations from such an inverted correlation and vary somewhat for water-rich and methanol-rich atmospheres. Molecular dynamics (MD) simulations suggest that the observed orders of solvation result from the accessibility of the hydrated solvation shells close to the PSBP-b-PNIPMAM chains.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202408073DOI Listing

Publication Analysis

Top Keywords

solvation dynamics
8
water mixed
8
mixed water/methanol
8
potassium salts
8
pnipmam psbp-b-pnipmam
8
solvation
5
dynamics thermoresponsive
4
thermoresponsive polymer
4
polymer films
4
films influence
4

Similar Publications

Solvation layer effects on lithium migration in localized High-Concentration Electrolytes: Analyzing the diverse antisolvent Contributions.

J Colloid Interface Sci

December 2024

Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.

View Article and Find Full Text PDF

Multiple Topology Replica Exchange of Expanded Ensembles for Multidimensional Alchemical Calculations.

J Chem Theory Comput

January 2025

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States.

Relative free energy (RFE) calculations are now widely used in academia and the industry, but their accuracy is often limited by poor sampling of the complexes' conformational ensemble. To help address conformational sampling problems when simulating many relative binding free energies, we developed a novel method termed multiple topology replica exchange of expanded ensembles (MT-REXEE). This method enables parallel expanded ensemble calculations, facilitating iterative RFE computations while allowing conformational exchange between parallel transformations.

View Article and Find Full Text PDF

Solvation Dynamics of Thermoresponsive Polymer Films: The Influence of Salt Series in Water and Mixed Water/Methanol Atmosphere.

Adv Sci (Weinh)

December 2024

Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.

Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability.

View Article and Find Full Text PDF

Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility.

View Article and Find Full Text PDF

Water-Mediated Proton Hopping Mechanisms at the SnO(110)/HO Interface from Ab Initio Deep Potential Molecular Dynamics.

Precis Chem

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!