Endometriosis (EMS) is a chronic inflammatory disease frequently associated with infertility. N6-methyladenosine (m6A) methylation, the most common form of methylation in eukaryotic mRNAs, has gained attention in the study of female reproductive diseases, including EMS and infertility. This study aimed to investigate the role of m6A regulators in EMS-related infertility. To begin, specific m6A regulators were identified by analyzing the GSE120103 dataset, followed by receiver operating characteristic (ROC) curve analysis. A nomogram model was then constructed, and unsupervised clustering of m6A regulators was performed to identify distinct m6A molecular clusters. Functional enrichment analysis of differentially expressed genes (DEGs) between these clusters, along with immune cell infiltration analysis, was subsequently conducted. In addition, the single-cell dataset GSE214411 was analyzed to explore the role of m6A regulators in various cell types. Finally, clinical samples were collected, and immunohistochemistry analysis was performed. The study identified seven key m6A regulators with significant diagnostic value for EMS-related infertility and two distinct m6A molecular clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs between the clusters revealed that m6A clustering was strongly associated with immune pathways. Immune cell infiltration analysis further demonstrated that the expression levels of m6A regulators had a notable impact on immune cell infiltration. Single-cell analysis revealed that HNRNPA2B1 and HNRNPC were significantly elevated in endometrial immune cells from infertile EMS patients but notably decreased in stromal cells. Immunohistochemical staining confirmed that HNRNPA2B1 and HNRNPC expression levels were significantly higher in the eutopic endometrium of fertile women compared to ovarian EMS patients. These findings suggest that m6A regulators play critical roles in the development and progression of EMS-related infertility. Notably, HNRNPA2B1 and HNRNPC may serve as potential biomarkers for this condition.

Download full-text PDF

Source
http://dx.doi.org/10.17305/bb.2024.11311DOI Listing

Publication Analysis

Top Keywords

m6a regulators
28
ems-related infertility
12
immune cell
12
cell infiltration
12
hnrnpa2b1 hnrnpc
12
m6a
11
regulators
8
serve potential
8
potential biomarkers
8
role m6a
8

Similar Publications

The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review.

Epigenetics Chromatin

January 2025

Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.

Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Case Western Reserve Universit, CLEVELAND, OH, USA.

Background: Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD.

Method: An unbiased screening of intraneuronal Aβ42 protein-interactome was perfumed in AD cell culture.

View Article and Find Full Text PDF

Wilms tumor 1-associated protein (WTAP) has been validated to be a crucial regulator in the tumorigenesis and advancement of diverse malignancies. This study intended to probe the impacts of WTAP on colorectal cancer (CRC) progression from the perspective of N6-methyladenosine (m6A) modification. The differential expression patterns of WTAP in clinical CRC samples and cultured cell lines were validated via qRT-PCR and western blot.

View Article and Find Full Text PDF

ALKBH5 acts a tumor-suppressive biomarker and is associated with immunotherapy response in hepatocellular carcinoma.

Sci Rep

January 2025

Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.

As immune-checkpoint inhibitors (ICIs) therapy has made great strides in hepatocellular carcinoma (HCC) treatment, improving patient response to this strategy has become the main focus of research. Accumulating evidence has shown that mA methylation plays a crucial role in the tumorigenesis and progression of HCC, while the precise impact of the mA demethylase ALKBH5 on the tumor immune microenvironment (TIME) of HCC remains poorly defined. The clinical significance of ALKBH5 and TIM3 were evaluated in human HCC tissues.

View Article and Find Full Text PDF

Metabolic reprogramming fuels cancer cell metastasis and remodels the immunosuppressive tumor microenvironment (TME). We report here that circPETH, a circular RNA (circRNA) transported via extracellular vesicles (EVs) from tumor-associated macrophages (TAMs) to hepatocellular carcinoma (HCC) cells, facilitates glycolysis and metastasis in recipient HCC cells. Mechanistically, circPETH-147aa, encoded by circPETH in an m6A-driven manner, promotes PKM2-catalyzed ALDOA-S36 phosphorylation via the MEG pocket.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!