AI Article Synopsis

  • The study examines how the rheology (flow behavior) of ingested fluids affects swallowing and the physiological responses during deglutition, specifically comparing xanthan gum (XG) and sodium carboxymethylcellulose gum (CMC) in healthy adults.
  • Results showed that CMC had significantly higher viscosity than XG at higher shear rates (300 s), leading to increased flow resistance during swallowing, indicated by higher intrabolus pressure and altered relaxation times of the upper esophageal sphincter (UES).
  • The findings suggest that the differences in shear viscosity of these fluids affect pharyngeal function during swallowing, highlighting the importance of fluid properties over standardized viscosity levels (IDDSI).

Article Abstract

Background: The shear rheology of ingested fluids influences their pharyngo-esophageal transit during deglutition. Thus, swallowed fluids elicit differing physiological responses due to their shear-thinning profile.

Methods: Two hydrocolloid fluids, xanthan gum (XG) and sodium carboxymethylcellulose gum (CMC), were compared in 10 healthy adults (mean age 39 years). Manometry swallowing assessments were performed using an 8-French catheter. Swallows were analyzed using the Swallow Gateway web application (www.swallowgateway.com). Grouped data were analyzed by a mixed statistical model. The coefficient of determination (r) assessed the relationship between measures and bolus viscosity (SI units, mPa.s) at shear rates of 1-1000 s.

Key Results: Rheology confirmed that the thickened fluids had similar viscosities at 50 s shear rate (XG IDDSI Level-1, 2, and 3 respectively, 74.3, 161.2, and 399.6 mPa.s vs. CMC Level-1, 2, and 3 respectively 78.0, 176.5, and 429.2 mPa.s). However, at 300 s shear, CMC-thickened fluids exhibited approximately double the viscosity (XG Level-1, 2, and 3 respectively 19.5, 34.4, and 84.8 mPa.s vs. CMC Level-1, 2, and 3 respectively, 41.3, 80.8, and 160.2 mPa.s). In vivo swallows of CMC, when compared to XG, showed evidence of greater flow resistance, such as increased intrabolus pressure (p < 0.01) and UES Integrated Relaxation Pressure (UESIRP, p < 0.01) and shorter UES Relaxation Time (p < 0.05) and Bolus Presence Time (p < 0.001). The apparent fluid viscosity (mPa.s) correlated most significantly with increasing UESIRP (r 0.69 at 50 s and r 0.97 at 300 s, p < 0.05).

Conclusion: Fluids with divergent shear viscosities demonstrated differences in pharyngeal function. These physiological responses were linked to the shear viscosity and not the IDDSI level.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nmo.14988DOI Listing

Publication Analysis

Top Keywords

cmc compared
8
cmc level-1
8
fluids
5
impact bolus
4
bolus rheology
4
rheology physiological
4
physiological swallowing
4
swallowing parameters
4
parameters derived
4
derived pharyngeal
4

Similar Publications

Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies.

Pharm Res

January 2025

BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.

Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.

Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.

View Article and Find Full Text PDF

Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.

View Article and Find Full Text PDF

Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.

View Article and Find Full Text PDF

Since abdominal adhesion are quite problematic in abdominal and pelvic surgery, the conventional HA/CMC film are commonly used as an anti-adhesive material. However, such types are difficult to be rolled and delivered through the port of laparoscopic surgical devices due to adherence to the laparoscopic port or other parts of the films. To create an anti-adhesion film with more favorable handling properties and anti-adhesive effect, we developed a novel punctate uneven gelatin film (PU GF).

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!