Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion. A variety of natural and synthetic biomaterials, along with decellularized cornea, have been employed in corneal wound healing. Commonly utilized natural biomaterials encompass proteins such as collagen, gelatin, and silk fibroin (SF), as well as polysaccharides including alginate, chitosan (CS), hyaluronic acid (HA), and cellulose. Synthetic biomaterials primarily consist of polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and poly (lactic-co-glycolic acid) (PLGA). Bio-based materials and their composites are primarily utilized as hydrogels, films, scaffolds, patches, nanocapsules, and other formats for the treatment of blinding ocular conditions, including corneal wounds, corneal ulcers, corneal endothelium, and stromal defects. This review attempts to summarize in vitro, preclinical, and clinical trial studies relevant to corneal regeneration using biomaterials within the last five years, and expect that these experiences and outcomes will inspire and provide practical strategies for the future development of biomaterials for corneal regeneration. Furthermore, potential improvements and difficulties for these biomaterials are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202408021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!