Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems. Rice agroecosystem receives high levels of antibiotics from direct applications, and sources like manure and irrigation water. Consequently, uptake of antibiotic residues by rice (Oryza sativa L.) is resulting in accumulation of antibiotics in plant parts. Accumulation of these antibiotics can be toxic to plant, and can be partitioned to rice grain and straw, and reach the human and animal food chain leading to the development of antibiotic resistance. Moreover, the antibiotics can alter soil microbes, which would result in loss of production. This study compiles information from existing literature on global antibiotic usage and explores how antibiotics enter the rice ecosystem through contaminated wastewater, manure, sewage sludge, and through direct application. A detailed discussion on the persistence and movement of antibiotics in different environment compartments is provided. The review also highlights the impacts of antibiotics on plants and natural microbiota, as well as issues pertaining to antimicrobial resistance in public health sectors. For sustainable mitigation of the issues of antibiotic residues in rice ecosystem, we suggest application of decontaminated manure, microbial bioremediation, optimization of the use of plant-based alternatives, enhancing regulations, and fostering global collaboration. We advocate integrated disease management approaches which can significantly reduce the antibiotic use in rice agroecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35765-7DOI Listing

Publication Analysis

Top Keywords

rice agroecosystem
12
development antibiotic
12
antibiotic resistance
12
antibiotics
10
human animal
8
resistance public
8
public health
8
antibiotic residues
8
residues rice
8
accumulation antibiotics
8

Similar Publications

The use of nanoparticles is a promising ecofriendly strategy for mitigating both abiotic and biotic stresses. However, the physiological and defense response mechanisms of plants exposed to multiple stresses remain largely unexplored. Herein, we examined how foliar application of biogenic nanosilica (BNS) impacts rice plant growth, molecular defenses, and metabolic responses when subjected to arsenic (As) toxicity and infested by the insect .

View Article and Find Full Text PDF

Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems.

View Article and Find Full Text PDF

Diversity and functional traits based indigenous rhizosphere associated phosphate solubilizing bacteria for sustainable production of rice.

Front Microbiol

December 2024

Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.

Introduction: Rice, particularly Basmati rice, holds significant global importance as a staple food. The indiscriminate use of phosphate-based fertilizers during rice production has led to high residual levels of these chemicals in soil, impacting soil health and fertility. This study aimed to address this challenge by investigating the potential of phosphate solubilizing bacteria (PSB) in improving soil fertility and boosting the growth of Basmati rice.

View Article and Find Full Text PDF

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

Invasive alien plants pose a significant threat to biodiversity and the agricultural economy. The invasive weed (Ammannia coccinea) competes with rice in paddy fields, potentially threatening rice production. Despite the crucial need to estimate the global geographical distribution and ecological niche dynamics of A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!