Tetranychus urticae Koch, commonly known as two spotted spider mites, is a major agricultural pest that causes significant economic loss. Predatory mites, such as Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor) are important biological control agents for this pest. However, the efficacy of these predators can be compromised by pesticide application. This study investigated the impact of two acaricides, chlorfenapyr and acequinocyl, on the functional and numerical responses of P. persimilis and N. californicus feeding on T. urticae. Bioassay tests were conducted using a leaf disk dipping method at various pesticides concentrations. Chlorfenapyr exhibited approximately five times higher toxicity than acequinocyl for both predatory mite species and N. californicus exhibited higher tolerance to both acaricides compared to P. persimilis. Functional response experiments assessed the predation rates of 10-day-old predatory mites on different densities of T. urticae nymphs. Analysis of functional response data indicated a Type II response across all treatments. The sublethal concentrations of both acaricides negatively affected the predatory efficiency of both species by reducing attack rate and daily prey consumption and increasing handling times. The numerical response data showed a reduction in egg production correlating with increased pesticide concentrations. Additionally, the efficiency of conversion of ingested food (ECI) decreased with increasing pesticide concentrations. These findings highlight the detrimental effects of pesticides on beneficial arthropods and emphasize the need for integrated pest management strategies that minimize the reliance on chemical control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10493-024-00984-7DOI Listing

Publication Analysis

Top Keywords

predatory mites
12
chlorfenapyr acequinocyl
8
acequinocyl functional
8
functional numerical
8
numerical responses
8
mites phytoseiulus
8
phytoseiulus persimilis
8
neoseiulus californicus
8
tetranychus urticae
8
functional response
8

Similar Publications

Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) is an important pest of cowpeas, Vigna unguiculata (L.) Walp., and can cause severe damage to the crop.

View Article and Find Full Text PDF

Tetranychus urticae Koch, commonly known as two spotted spider mites, is a major agricultural pest that causes significant economic loss. Predatory mites, such as Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor) are important biological control agents for this pest. However, the efficacy of these predators can be compromised by pesticide application.

View Article and Find Full Text PDF

Background: Neoseiulus californicus is a predatory mite that can control various spider mites and other small arthropods. Despite its acknowledged effectiveness in the natural enemy market, a crucial knowledge gap exists in understanding the genomic features related to its predatory traits and adaptation. With the increasing emphasis on modern pest management strategies and dynamic environmental changes in plant production trends, constructing a reliable genomic resource for N.

View Article and Find Full Text PDF

Enhanced mite control and agricultural safety with etoxazole-loaded chitin nanocrystals: Synthesis, characterization, and ecological impacts.

Pestic Biochem Physiol

December 2024

College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China.

Chitin nanocrystals (ChNCs), known for their high aspect ratio, surface charge, and mobility, are promising bio-based nanomaterials for drug delivery. However, their potential as pesticide carriers in agriculture remains underexplored. Etoxazole, a diphenyl oxalate acaricide, effectively inhibits egg hatching and the normal molting process in mites but suffers from rapid degradation and short persistence in field applications.

View Article and Find Full Text PDF

Factors influencing pesticide-biocontrol agent compatibility: A metadata-based review.

Pestic Biochem Physiol

December 2024

University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic. Electronic address:

The complexities of non-target effects of registered pesticides on biocontrol agents (BCAs) hinder the optimization of integrated pest management programs in agriculture. The wealth of literature on BCA-pesticide compatibility allows for the investigation of factors influencing BCA susceptibility and the generalized impacts of different pesticides. We conducted a meta-analysis using 2088 observations from 122 published articles to assess non-target effects on two phytoseiid species (Neoseiulus californicus and Phytoseiulus persimilis), a parasitoid (Encarsia formosa), and two microbial BCAs (Trichoderma harzianum and Metarhizium anisopliae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!