Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.

Adv Biochem Eng Biotechnol

Plant Ecology and Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.

Published: December 2024

The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/10_2024_274DOI Listing

Publication Analysis

Top Keywords

agricultural wastes
24
value-added products
20
agricultural
12
wastes value-added
12
products
8
conversion agricultural
8
economic transformation
8
agricultural residues
8
production biofuels
8
farmers entrepreneurs
8

Similar Publications

Migration and risk assessment of heavy metals from swine manure in an organic fertilizer - soil - ryegrass - rex rabbit system: Based on field trials.

Sci Total Environ

January 2025

Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:

Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.

View Article and Find Full Text PDF

Deciphering antioxidant interactions via data mining and RDKit.

Sci Rep

January 2025

Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.

Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.

View Article and Find Full Text PDF

Evaluating grease trap management practices: A case study from Seri Kembangan, Malaysia.

J Environ Manage

January 2025

Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address:

Sewerage blockages due to oil and grease deposition discharged from food premises remain a persistent issue globally. This study evaluates the degree of compliance of food premises in Seri Kembangan, Selangor, Malaysia with grease trap guideline, and investigates the factors affecting restaurants' compliance performance. Data were collected from 36 restaurants through a questionnaire-based interview consisting of questions about grease trap installation, operation, maintenance and waste disposal, followed by a walkthrough of the kitchen.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!