As novel promising anticancer candidates, the piano-stool type complexes of ruthenium, [RuCl(η-p-cymene)(N,S-L)]PF, K-, were synthesized from the reaction of the substituted benzo[b]thiophene based thiosemicarbazone ligands (L) with [{RuCl(η-p-cymene)}(μ-Cl)]. All complexes were fully characterized using elemental analysis, and spectroscopic methods such as FT-IR and H NMR. The molecular masses of the complexes were proved by MALDI-TOF analysis. Single crystal X-ray diffraction study was employed in the structural elucidation of complex K which shows a distorted octahedral geometry around the Ru(II) ion. Furthermore, spectroscopic methods revealed that in all complexes the ligands are coordinated to the metal center in neutral thione form via N, S donors. In this study, the effect of all ligands, complexes and commercial drugs with a different concentration on the viability of OVCAR-3, A2780 and OSE cells were compared. In this comparison, the cytotoxicity of ruthenium (II) complexes on two ovarian cancer cell lines (human A2780 and human OVCAR-3) was evaluated. For this purpose, the resazurin assay was performed. Based on our studies, complex K showed the highest toxicity against OVCAR-3 and A2780 cells. The cytotoxic effect of K was found to be higher than that of the commercial anticancer agents Oxalpin and Carbodex, 1.8-34.7-fold for OVCAR-3 cells and 1.9-11.8-fold for A2780 cells, respectively. These results provide insight into the potential of ruthenium (II) complexes as a cytotoxic agent for the treatment of ovarian cancer, particularly for primary tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-024-02090-w | DOI Listing |
J Biol Inorg Chem
December 2024
Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
As novel promising anticancer candidates, the piano-stool type complexes of ruthenium, [RuCl(η-p-cymene)(N,S-L)]PF, K-, were synthesized from the reaction of the substituted benzo[b]thiophene based thiosemicarbazone ligands (L) with [{RuCl(η-p-cymene)}(μ-Cl)]. All complexes were fully characterized using elemental analysis, and spectroscopic methods such as FT-IR and H NMR. The molecular masses of the complexes were proved by MALDI-TOF analysis.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu 620015, India. Electronic address:
R - C(S) - NH - N = CH - R [R = o-OCHCH & R = CHN (2-EBP), R = o-OCHCH & R = CHNO (2-EBM), R = p-OCHCH & R = CHN (4-EBP), and R = p-OCHCH & R = CHNO (4-EBM)] have been synthesized. The ligands have been verified via various spectroscopic methods such as IR, NMR, etc. Single-crystal X-ray diffraction methods were applied to identify the structure of 4-EBP.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:
Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, Engineering Faculty, Inorganic Chemistry Department, Istanbul University-Cerrahpasa, 34320, Istanbul, Turkiye.
Dalton Trans
December 2024
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!