Light microscopy is a practical tool for advancing biomedical research and diagnostics, offering invaluable insights into the cellular and subcellular structures of living organisms. However, diffraction and optical imperfections actively hinder the attainment of high-quality images. In recent years, there has been a growing interest in applying deep learning techniques to overcome these challenges in light microscopy imaging. Nonetheless, the resulting reconstructions often suffer from undesirable artefacts and hallucinations. Here, we introduce a deep learning-based approach that incorporates the fundamental physics of light propagation in microscopy into the loss function. This model employs a conditioned diffusion model in a physics-informed architecture. To mitigate the issue of limited available data, we utilise synthetic datasets for training purposes. Our results demonstrate consistent enhancements in image quality and substantial reductions in artefacts when compared to state-of-the-art methods. The presented technique is intuitively accessible and allows obtaining higher quality microscopy images for biomedical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44172-024-00331-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683148PMC

Publication Analysis

Top Keywords

light microscopy
8
microscopy
5
microscopy image
4
image reconstruction
4
reconstruction physics-informed
4
physics-informed denoising
4
denoising diffusion
4
diffusion probabilistic
4
probabilistic model
4
model light
4

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!