Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes. This study also assesses the chemical forms of macronutrients retained in combustion ashes. The partitioning of elements between condensed and gaseous phases was quantified by mass balances based on elemental analyses of char and ash residues. The char and ash residues were prepared in a fixed-bed, batch reactor at temperatures within the range 800-1000 °C. Powder X-ray diffraction was used to identify the chemical forms of macronutrient elements in combustion ashes. Volatilisation of P was low (< 20%) when the digestates were heated in inert and oxidising atmospheres, whereas a reducing atmosphere volatilized P to a major extent (~ 60% at 1000 °C). Oxidising atmospheres increased volatilisation of N but suppressed volatilisation of K, Na, and Zn. Volatilisation of the following elements was low (< 30%) in all investigated operating conditions: Ca, Mg, Mn, and Cu. The combustion ashes contained both high concentrations of P (around 7 w/w%) and acceptable concentrations of regulated heavy metals (Cu, and Zn) for application on agricultural and forest soils in Finland. Phosphorous was retained in the combustion ashes in the form of whitlockite. This form of P is expected to be available to plants when the ashes are added to soil.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40643-024-00828-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683038PMC

Publication Analysis

Top Keywords

nutrient elements
12
heavy metals
12
fates nutrient
8
elements heavy
8
metals thermal
8
thermal conversion
8
conversion cattle
8
anaerobic digestates
8
study assesses
8
condensed gaseous
8

Similar Publications

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Evaluating multiannual sedimentary nutrient retention in agricultural two-stage channels.

Sci Rep

January 2025

Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.

The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.

View Article and Find Full Text PDF

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

The proteome is a terminal electron acceptor.

Proc Natl Acad Sci U S A

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Microbial metabolism is impressively flexible, enabling growth even when available nutrients differ greatly from biomass in redox state. , for example, rearranges its physiology to grow on reduced and oxidized carbon sources through several forms of fermentation and respiration. To understand the limits on and evolutionary consequences of this metabolic flexibility, we developed a coarse-grained mathematical framework coupling redox chemistry with principles of cellular resource allocation.

View Article and Find Full Text PDF

Trophic ecology in an anchialine cave: A stable isotope study.

PLoS One

January 2025

Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.

The analysis of carbon and nitrogen stable isotopes (δ13C and δ15N) has been widely used in ecology since it allows to identify the circulation of energy in a trophic network. The anchialine ecosystem is one of the less explored aquatic ecosystems in the world and stable isotope analysis represents a useful tool to identify the routes through which energy flows and to define the trophic niches of species. Sampling and data recording was conducted in one anchialine cave, Cenote Vaca Ha, near the town of Tulum, Quintana Roo, Mexico, where seven stygobitic species endemic to the anchialine caves of the Yucatan Peninsula, plus sediment, water and vegetation samples were analyzed to determine what the main nutrient sources are.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!