Although cellular senescence has been recognized as a hallmark of aging, it is challenging to detect senescence cells (SnCs) due to their high level of heterogeneity at the molecular level. Machine learning (ML) is likely an ideal approach to address this challenge because of its ability to recognize complex patterns that cannot be characterized by one or a few features, from high-dimensional data. To test this, we evaluated the performance of four ML algorithms including support vector machines (SVM), random forest (RF), decision tree (DT), and Soft Independent Modelling of Class Analogy (SIMCA), in distinguishing SnCs from controls based on bulk RNA sequencing data. The dataset includes 162 in vitro samples, covering three human cell types: fibroblasts, melanocytes, and keratinocytes, and three senescence inducers: irradiation, bleomycin treatment, and replication. Under tenfold and leave-one-out cross-validation, as well as independent dataset validation, all methods provided ~ 80% or higher accuracy, with SVM reaching over 99%. Similar accuracy was achieved using expert-curated gene lists, e.g., SenMayo and CellAge, instead of our algorithm-prioritized gene list using minimum redundancy-maximum relevance (mRMR). However, only a few genes overlapped between the gene sets, suggesting a wide impact of senescence on the transcriptome. Overall, our study demonstrated a proof-of-concept for identifying senescence using ML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11357-024-01485-6 | DOI Listing |
Biomark Res
January 2025
Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.
Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.
Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFHereditas
January 2025
Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.
Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!