A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimal design of a novel modified electric eel foraging optimization (MEEFO) based super twisting sliding mode controller for controlling the speed of a switched reluctance motor. | LitMetric

Switched Reluctance Motor (SRM) has a very high potential for adjustable speed drive operation due to their cost-effectiveness, high efficiency, robustness, simplicity, etc. Now a days SRMs are widely used in automotive industries as traction motors in electric vehicles and hybrid electric vehicles, air-conditioning compressors, and for other auxiliary services. In this article, a novel super twisting sliding mode controller (STSMC) is proposed to improve the performance of an SRM for reducing the ripple in speed and torque. Initially, a novel Modified Electric Eel Foraging Optimization (MEEFO) technique is developed by incorporating a quasi-oppositional phase and its performance is compared with the conventional Electric Eel Foraging Optimization (EEFO) technique with four popular benchmark functions. Then, both MEEFO and EEFO techniques are implemented to optimally design PI, SMC and STSMC controllers to effectively control the speed of an SRM. The study is carried in three different scenarios such as during starting, during a torque change and during a speed change. Finally, performance of the SRM in real time is studied with OPAL-RT 4510 simulator. It is observed that MEEFO based STSMC exhibits significant improvements in effectively controlling speed of the SRM, as compared to its other proposed counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685943PMC
http://dx.doi.org/10.1038/s41598-024-83495-0DOI Listing

Publication Analysis

Top Keywords

electric eel
12
eel foraging
12
foraging optimization
12
novel modified
8
modified electric
8
optimization meefo
8
meefo based
8
super twisting
8
twisting sliding
8
sliding mode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!