A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sivan classification system for diagnosis of jaw lesions based on visual volumetric analysis of 3-dimensional cone-beam computed tomographic images. | LitMetric

A novel classification system, termed the Sivan classification, was developed to enhance the diagnosis of jaw lesions by utilizing visual volumetric analysis of three-dimensional Cone Beam Computed Tomography (CBCT) images. This classification groups lesions into ten categories, primarily divided into hypovolumetric, hypervolumetric, and normovolumetric groups. To validate this system, 10 raters-comprising 5 general dentists and 5 oral radiology specialists-assessed the CBCT images and diagnosed the lesions using the Sivan classification. Eight raters repeated the process after one month to assess consistency. The overall agreement between raters, quantified using kappa statistics, was 0.82, indicating excellent consistency. Hypervolumetric and normovolumetric lesions demonstrated the highest agreement (kappa 0.84 and 0.82, respectively), while hypovolumetric lesions showed substantial agreement (kappa 0.77). Pairwise interrater agreement ranged from 76 to 93%, with kappa values between 0.75 and 0.87. Intrarater reliability was equally strong, with kappa values between 0.79 and 0.89.These results suggest that the Sivan classification provides a robust and reliable framework for diagnosing jaw lesions using CBCT volumetric analysis, surpassing traditional diagnostic methods in accuracy and consistency.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83974-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685823PMC

Publication Analysis

Top Keywords

sivan classification
16
jaw lesions
12
volumetric analysis
12
classification system
8
diagnosis jaw
8
visual volumetric
8
cbct images
8
hypervolumetric normovolumetric
8
agreement kappa
8
kappa values
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!