A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on floating object classification algorithm based on convolutional neural network. | LitMetric

Research on floating object classification algorithm based on convolutional neural network.

Sci Rep

School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Published: December 2024

With the advancement of artificial intelligence technology, unmanned boats utilizing deep learning models have shown significant potential in water surface garbage classification. This study employs Convolutional Neural Network (CNN) to extract features of water surface floating objects and constructs the VGG16-15 model based on the VGG-16 architecture, capable of identifying 15 common types of water surface floatables. A garbage classification dataset was curated to obtain 5707 images belonging to 15 categories, which were then split into training and validation sets in a 4:1 ratio. Customized improvements were made on the base VGG-16 model, including adjusting the neural network structure to suit 15 floating object categories, applying learning rate decay and early stopping strategies for model optimization, and using data augmentation to enhance model generalization. By tweaking certain parameters, the study analyzed the impact of the number of epochs and batch sizes on the model's classification effectiveness. The results show that the model achieves the best performance with 20 epochs and a batch size of 64, reaching a recognition accuracy of 93.86%. This is a 10.09% improvement over the traditional VGG-16 model and a 4.91% increase compared to the model without data augmentation, demonstrating the effectiveness of model improvements and data augmentation in enhancing image recognition capabilities. Additionally, the few-shot test demonstrates the fine-tuned model's improved generalization capability. This research illustrates the applicability of transfer learning in the task of water surface garbage classification and provides technical support for the application of unmanned boats in environmental protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685508PMC
http://dx.doi.org/10.1038/s41598-024-83543-9DOI Listing

Publication Analysis

Top Keywords

water surface
16
neural network
12
garbage classification
12
data augmentation
12
floating object
8
convolutional neural
8
unmanned boats
8
surface garbage
8
model
8
vgg-16 model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!