Runoff fluctuations under the influence of climate change and human activities present a significant challenge and valuable application in constructing high-accuracy runoff prediction models. This study aims to address this challenge by taking the Wanzhou station in the Three Gorges Reservoir area as a case study to optimize various prediction models. The study first selects artificial neural network (ANN) and support vector machine (SVM) as the base models. Then, it evaluates and selects from three time-series decomposition methods. Time-Varying Filter-based Empirical Mode Decomposition (TVF-EMD), Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and Variational Mode Decomposition (VMD). Subsequently, these decomposition methods are coupled with optimization algorithms, including Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), and Sparrow Search Algorithm (SSA), to construct various hybrid prediction models. The results indicate that: (1) The single prediction model LSTM demonstrated higher prediction accuracy compared to BP and SVM; (2) The VMD-LSTM model outperformed the CEEMDAN-LSTM and TVF-EMD-LSTM models. Compared to the single LSTM model, the Nash-Sutcliffe Efficiency (NSE) and Pearson's correlation coefficient (R) of the VMD-LSTM model were improved by 15.06% and 6.82%, respectively; (3) Among the machine learning prediction models coupled with various methods, the VMD-SSA-LSTM model achieved the highest accuracy. Compared to the VMD-LSTM model, the NSE and R values of the VMD-SSA-LSTM model were further increased by 13.09% and 4.26%, respectively. Employing a "decomposition-reconstruction" strategy combined with robust optimization algorithms enhances the performance of machine learning prediction models, thereby significantly improving the runoff prediction capabilities in watershed hydrological models.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-83695-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685801PMC

Publication Analysis

Top Keywords

prediction models
24
runoff prediction
12
machine learning
12
mode decomposition
12
vmd-lstm model
12
prediction
9
models
9
models study
8
decomposition methods
8
empirical mode
8

Similar Publications

Background: De-intensification of anti-cancer therapy without significantly affecting outcomes is an important goal. Omission of axillary surgery or breast radiation is considered a reasonable option in elderly patients with early-stage breast cancer and good prognostic factors. Data on avoidance of both axillary surgery and radiation therapy (RT) is scarce and inconclusive.

View Article and Find Full Text PDF

A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.

Biomark Res

January 2025

Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.

Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.

Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).

View Article and Find Full Text PDF

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

Association between remnant cholesterol (RC) and endometriosis: a cross-sectional study based on NHANES data.

Lipids Health Dis

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: Prior research indicates a potential link between dyslipidemia and endometriosis (EMs). However, the relationship between remnant cholesterol (RC) and EMs has not been thoroughly investigated. Consequently, looking into and clarifying the connection between RC and EMs was the primary goal of this study.

View Article and Find Full Text PDF

Background: In the intensive care unit (ICU), the incidence of iron-deficiency anemia (IDA) is relatively high and is associated with various adverse clinical outcomes. Therefore, it is crucial to identify simple and practical indicators to assess the mortality risk in ICU patients with IDA. This study aims to investigate the relationship between the Neutrophil Percentage-to-Albumin Ratio (NPAR) levels in patients with IDA in the ICU and their all-cause mortality at 30 and 365 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!