Considering the substantial inaccuracies inherent in the traditional manual identification of ceramic categories and the issues associated with analyzing ceramics based on chemical or spectral features, which may lead to the destruction of ceramics, this paper introduces a novel provenance classification of archaeological ceramics which relies on microscopic features and an ensemble deep learning model, overcoming the time consuming and require costly equipment limitations of current standard methods, and without compromising the structural integrity and artistic value of ceramics. The proposed model includes the following: the construction of a dataset for ancient ceramic microscopic images, image preprocessing methods based on Gamma correction and CLAHE equalization algorithms, extraction of image features based on three deep learning architectures-VGG-16, Inception-v3 and GoogLeNet, and optimal fusion. This latter is based on stochastic gradient descent (SGD) algorithm, which allows optimal fitting of the fusion model parameters by freezing and unfreezing model layers. The experiments employ accuracy, precision, recall and F1 score criteria to offer a comprehensive of the classification outcomes. Under 5-fold cross-validation and independent testing, the proposed fusion-based model performed excellently after comparing above three typical deep learning model. The predictive results of the ensemble deep learning are very stable at about 0.9601, 0.9615, 0.9607 and 0.9583 in precision, recall, F1-score, and accuracy on the independent testing dataset, respectively. This indicates that our model is robust and reliable. Furthermore, we use correspondence analysis to explore the distribution of the ceramic microscopic images from different kilns. This method can be applied in the field of ceramic cultural relic identification, contributing to improved diagnostic accuracy and efficiency, and providing new ideas and methods for related research areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-83533-x | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685384 | PMC |
The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFSci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!