The fully mechanized tunnelling method using an earth pressure balance tunnel boring machine (EPB-TBM) with a horseshoe-shaped cross section was first developed and applied to a loess mountain tunnel, along with the application of a horseshoe-shaped segmental tunnel lining. The mechanical behavior of this novel type of segmental tunnel lining still contained uncertainties, and full-scale ring tests were conducted for further investigation. During the loading process, the ring deformation, joint opening, and concrete strain were measured, and the occurrence and progression of structural damage were observed and documented. The experimental results demonstrate that the structural failure of the horseshoe-shaped segmental ring mainly occurred in the arch area, while the invert did not prove to be a weak area. The deformation and failure mechanisms of the horseshoe-shaped segmental ring were found to be similar to those of circular ones. Significantly, the specific characteristics of the ring convergence deformation and bending moment distribution were significantly affected by the distribution positions of segment joints. In addition, during the initial stages of TBM advancement, frequent segment damage was observed at inferior joints, and the elaboration on the causes and corresponding measures was provided. This study provides significant evidence for the design and optimization of horseshoe-shaped segmental tunnel linings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-81210-7 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686261 | PMC |
Sci Rep
December 2024
Key Laboratory of Transportation Tunnel Engineering, School of Civil Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.
Dental reconstruction for patients diagnosed with severe mandibular bone atrophy using common dental implants is a challenging process. In such cases, surgeons may encounter challenges such as insufficient available bone, soft tissue, damage to the inferior alveolar nerve, and even the risk of bone fracture. In this study, a new design concept of mandibular patient-specific implants for severely atrophic ridges followed by finite element evaluation was presented to investigate the mechanical functionality of the concept.
View Article and Find Full Text PDFCells Tissues Organs
August 2019
Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany.
Existence and biomedical relevance of the neurenteric canal, a transient midline structure during early neurulation in the human embryo, have been controversially discussed for more than a century by embryologists and clinicians alike. In this study, the authors address the long-standing enigma by high-resolution histology and three-dimensional reconstruction using new and historic histological sections of 5 human 17- to 21-day-old embryos and of 2 marmoset monkey embryos of the species Callithrix jacchus at corresponding stages. The neurenteric canal presents itself as the classical vertical connection between the amniotic cavity and the yolk sac cavity and is lined (a) craniolaterally by a horseshoe-shaped "hinge of involuting notochordal cells" within Hensen's node and (b) caudally by the receding primitive streak epiblast dorsally and by notochordal plate epithelium ventrally, the latter of which covered the (longitudinal) notochordal canal on its ventral side at the preceding stage.
View Article and Find Full Text PDFJ Anat
August 2018
Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic.
eNeuro
January 2019
Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid 28223, Spain.
Changes in the size of the synaptic junction are thought to have significant functional consequences. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) to obtain stacks of serial sections from the six layers of the rat somatosensory cortex. We have segmented in 3D a large number of synapses ( = 6891) to analyze the size and shape of excitatory (asymmetric) and inhibitory (symmetric) synapses, using dedicated software.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!